

Transfert de cohérence spectral via un interféromètre à fibre:

plancher de bruit et méthodes d'asservissement

Stéphanie GRABIELLE, Debanjan Show, Jean-Pierre Coulon, Fabien Kéfélian Laboratoire ARTEMIS (CNRS /Observatoire Côte d'Azur/Université Côte d'azur)

Contexte initial

- Asservissement Pound-Drever-Hall sur un interféromètre à fibre: améliorations et limites
- •Transfert spectral par asservissement hétérodyne
- Conclusion

2

Contexte initial

- Asservissement Pound-Drever-Hall sur un interféromètre à fibre: améliorations et limites
- Transfert spectral par asservissement hétérodyne
- Conclusion

3

Contexte général

Transfert spectral de cohérence via un interféromètre à fibre

Discriminateur de fréquence optique similaire à la cavité Fabry-Pérot de transfert

Puissance de sortie

 Interféromètre à deux bras avec un désaccord de 1 km correspond à une cavité Fabry-Pérot de finesse 50 000

Contexte initial

Objectifs: Mesurer le plancher de bruit d'asservissement Pound-Drever-Hall hors boucle d'un laser

<u>Méthode</u>: Caractérisation du bruit hors boucle par mesure du battement de deux diodes laser RIO asservies sur un même interféromètre pour s'affranchir du bruit de la fibre

Résultats précédents

Plancher de l'erreur < $2 \times 10^{-2} \text{ Hz}/\sqrt{Hz}$ sur [20 Hz – 300 Hz] (ou $4 \times 10^{-4} \text{ Hz}^2/Hz$) Mise en évidence d'un bruit hors boucle blanc $\sim 2 \times 10^{-1} \text{ Hz}/\sqrt{Hz}$ (ou $4 \times 10^{-2} \text{ Hz}^2/Hz$)

Origine du bruit blanc hors boucle

Observation: Modulation à 30 kHz d'un des lasers génère un bruit blanc qui augmente le plancher de bruit résiduel du battement des deux lasers **Explication:** Non-linéarité du discriminateur de fréquence

$$\sin(\varepsilon(t)) \sim \varepsilon(t) - \frac{(\varepsilon(t))}{3!} + o((\varepsilon(t))^3)$$

Contexte initial

 Asservissement Pound-Drever-Hall sur un interféromètre à fibre: améliorations et limites

Transfert spectral par asservissement hétérodyne

Conclusion

Objectifs:

Réduire le plancher de bruit hors boucle

Comment?

Augmenter la bande d'asservissement au-delà de 30 kHz

Nouveau montage expérimental

ISL de l'interféromètre 498 kHz

Fonction de transfert globale

Fonction de transfert en boucle ouverte

Fonction de transfert globale

Planchers de bruit

Plancher de l'erreur < $2 \times 10^{-2} \text{ Hz}/\sqrt{Hz}$ sur [30 Hz – 5 kHz] (ou $4 \times 10^{-4} \text{ Hz}^2/Hz$) Plancher du bruit de battement < $10^{-1} \text{ Hz}/\sqrt{Hz}$ sur [120 Hz – 8 kHz] (ou < $10^{-2} \text{ Hz}^2/Hz$)

Planchers de bruit

Plancher de l'erreur < $2 \times 10^{-2} \text{ Hz}/\sqrt{Hz}$ sur [30 Hz – 5 kHz] (ou $4 \times 10^{-4} \text{ Hz}^2/Hz$) Plancher du bruit de battement < $10^{-1} \text{ Hz}/\sqrt{Hz}$ sur [120 Hz – 8 kHz] (ou < $10^{-2} \text{ Hz}^2/Hz$)

Limitations et perspectives

- Plancher de bruit $\sim 7 \times 10^{-2} \text{ Hz}/\sqrt{Hz}$ sur [1 kHz 6 kHz] (ou 4,9 × 10⁻³ Hz²/Hz)
- Convertisseur de Fréquence $\in [4,3 \times 10^{-2} 5 \times 10^{-2} \text{ Hz}/\sqrt{Hz}]$ sur [1 kHz 6 kHz] (ou 2,5 × 10⁻³ Hz²/Hz)

La limite du convertisseur fréquence-tension est presque atteinte

 Modèle simple de non-linéarité du discriminateur de fréquence n'explique pas la différence entre plancher de bruit et plancher d'erreur

Amélioration de la modélisation en cours

Autres sources de bruit?

Pistes en cours d'études:

- Couplage de parasites par l'EOM en fonction de l'amplitude de la modulation
- Couplage entre les signaux de correction des deux lasers à haute fréquence (>1MHz)

- Contexte initial
- Asservissement Pound-Drever-Hall sur un interféromètre à fibre: améliorations et limites
- Transfert spectral par asservissement hétérodyne
- Conclusion

20

Travaux de Bourbeau Hébert et. al (2020): transfert spectral de cohérence entre deux lasers de grandes différences de longueurs d'onde via un interféromètre à fibre

4196 Vol. 45, No. 15 / 1 August 2020 / Optics Letters	Letter
Optics Letters	
Hertz-level frequency comparisons between diverse color lasers without a frequency co	า mb

NICOLAS BOURBEAU HÉBERT,* ^(D) ASHBY P. HILTON, ^(D) PHILIP S. LIGHT, ^(D) AND ANDRE N. LUITEN

Institute for Photonics and Advanced Sensing (IPAS) and School of Physical Sciences, University of Adelaide, Adelaide, SA 5005, Australia *Corresponding author: nicolas.bourbeauhebert@adelaide.edu.au

Contexte

Travaux de Bourbeau Hébert et. al (2020): transfert spectral de cohérence entre deux lasers de grandes différences de longueurs d'onde via un interféromètre à fibre

Transfert spectral de cohérence par asservissement unique

Contexte

Travaux de Bourbeau Hébert et. al (2020): transfert spectral de cohérence entre deux lasers de grandes différences de longueurs d'onde via un interféromètre à fibre

- Plancher de bruit de battement des lasers asservis limités à 1 Hz/√Hz par l'acquisition numérique
- Cette technique permet de s'affranchir des fluctuations de délais de l'interféromètre

- Utiliser la simplicité de l'asservissement unique par méthode hétérodyne pour le transfert spectral de cohérence entre deux lasers de différence de longueurs d'onde égale à 18 nm.
- Conserver la spécificité de la boucle d'asservissement analogique utilisée en Pound-Drever-Hall

Objectif de l'étude:

Quelles sont les limitations du plancher de bruit de battement en tout analogique?

- Expérience d'asservissement simple de deux lasers (diode laser RIO à 1542 nm) sur un laser maître (diode laser RIO à 1560 nm) via deux interféromètres à fibres.
- Mesure du bruit de battement des deux lasers esclaves asservis sur le laser maître

Montage expérimental - Détails

On s'attend à être limité par la somme des bruits des fibres

Etape préalable: asservissement sur interféromètre

Planchers de bruit

Plancher de l'erreur < $2 \times 10^{-2} \text{ Hz} / \sqrt{Hz}$ sur [20 Hz – 6 kHz] (ou $4 \times 10^{-4} \text{ Hz}^2 / Hz$)

Plancher du bruit de battement atteint 10^{-1} Hz/ \sqrt{Hz} sur [4 kHz – 6 kHz] (ou 10^{-2} Hz $^2/Hz$]

Asservissement sur laser maître: Plancher de bruit

Plancher de l'erreur < $2 \times 10^{-2} \text{ Hz}/\sqrt{Hz}$ sur [30 Hz – 5 kHz] (ou $4 \times 10^{-4} \text{ Hz}^2/Hz$) Plancher du bruit de battement < $1 \text{ Hz}/\sqrt{Hz}$ sur [100 Hz – 17 kHz] Plancher du bruit de battement ~ $2 \times 10^{-1} \text{ Hz}/\sqrt{Hz}$ sur [4 kHz – 9 kHz] (ou $4 \times 10^{-2} \text{ Hz}^2/Hz$)

Asservissement sur laser maître: Planchers de bruit et limitations

Asservissement sur laser maître: Planchers de bruit et limitations

Pas de limitation du plancher de bruit par un bruit résiduel dû aux fibres (f < 60 Hz et f > 120 Hz)

Asservissement sur laser maître: Planchers de bruit et limitations

- Pas de limitation du plancher de bruit par un bruit résiduel dû aux fibres (f < 60 Hz et f > 120 Hz)
- Limitation du plancher de bruit à 4 ‰ du battement des lasers libres pour f < 4 kHz</p>

- Contexte initial
- Asservissement Pound-Drever-Hall sur un interféromètre à fibre: améliorations et limites
- Transfert spectral par asservissement hétérodyne

Conclusion

Bilan et perspectives

Asservissement Pound-Drever-	Transfert spectral de cohérence
Hall sur un interféromètre à fibre	par asservissement hétérodyne
 Bande d'asservissement × 9.3 :	 Plancher du bruit de battement des lasers asservis:
30 kHz → 280 kHz Plancher du bruit de battement 10⁻¹ Hz/√Hz sur [120 Hz - 8 kHz]	2 × 10 ⁻¹ Hz/√Hz sur [4 kHz – 9 kHz]
(ou < 10 ⁻² Hz ² /Hz)	< 1 Hz/√Hz sur [100 Hz – 17 kHz] Limitation du plancher de bruit à 4 ‰ du battement des lasers libres

Bilan et perspectives

Asservissement Pound-Drever-	Transfert spectral de cohérence
Hall sur un interféromètre à fibre	par asservissement hétérodyne
 Bande d'asservissement × 9, 3 : 30 kHz → 280 kHz Plancher du bruit de battement < 10⁻¹ Hz/√Hz sur [120 Hz - 8 kHz] (ou < 10⁻² Hz²/Hz) 	 Plancher du bruit de battement des lasers asservis: 2 × 10⁻¹Hz/√Hz sur [4 kHz – 9 kHz] < 1 Hz/√Hz sur [100 Hz – 17 kHz] Limitation du plancher de bruit à 4 ‰ du battement des lasers libres

Perspectives:

- Rechercher les causes des limitations des planchers de bruit de battement
- Etudier les possibilités de transfert spectral de cohérence des deux méthodes pour différents décalages de longueur d'onde des deux lasers asservis