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Preface

The aim of this ’Virgo Physics Book’ (VPB) is to keep track of the various
theoretical or numerical studies carried out during the development of the
Virgo conceipt and its realization. This is necessary for several reasons.

• The first reason is to present outside the collaboration, in a comprehen-
sive document, the sum of the theoretical researches carried out during
the R&D period (not fully over, considering future improvements), in
order to show what physical effects have been studied.

• The second reason is to prevent loss of memory in the collaboration.
It is convenient to be able to find in one place the state of the art in
the various domains of modeling. Evolution of the technology, of the
materials, etc... makes necessary to re-estimate from time to time the
orders of magnitude of different sources of noise, for instance, and check
wether the hierarchy is still valid. For doing this, the principles must
be available.

• The third reason is to provide a reference document for the young
searchers entering the collaboration allowing them to become efficiently
acquainted with the principles of the experiment. In this spirit, some
”frequently asked questions” are treated, even if the relation with Virgo
is not direct.

The principle of the document is thus to present all theoretical contribu-
tions of the Virgo teams in a comprehensive way. This is not a compilation
of Virgo notes, although obviously it contains some of them, nor a course of
physics, although obviously some general principles are recalled.

The VPB contains some works related to optics and other issues strongly
related to optics. The principles of interferometry are recalled, then the
various configurations of interferometers. The various principles of optical
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10 CONTENTS

modeling are presented (propagation of light, simulation of cavities, of inter-
ferometers), and also the methods of analyzing mirrors. The opto-thermal
problems are studied (thermal lensing, distortions), and the part of thermal
noise studies related to the mirror substrates though a special volume should
be dedicated to thermal noise issues. The modulation-demodulation theory
is also described.

Please report possible errors or misprints to

vinet@oca.eu

N.B.:
From time to time, this document could be improved by correcting such

misprints and errors, or by adding some new material.



Chapter 1

Theory of GW Interferometers

1.1 Shot noise limited interferometry

1.1.1 Spectral density of power equivalent to shot noise

Shot noise is produced by photodetectors currently used in all domains of
photonics. Even with very stable lasers and cooled detectors, the photocur-
rent appears, at the microscopic level as a random stationnary process having
a mean in agreement with a classical theory, but a variance that can be un-
derstood only by reference to quantum theory. In fact the light is produced
and received as a flux of photons, and it is shown, for instance, that during
a time interval ∆t, the number photons that a photodiode can detect is a
random variable N whose probability law is Poissonnian (a general law for
all processes consisting in random arrivals). This means that the probability
of detecting exactly n photons is:

pn = e−m
mn

n!
where m is the only parameter of the Poisson probability distribution, and
in concrete terms, represents the mean photon flux. In fact, if the mean
number of photons is larger than about 50, the Poisson law is identical to
a gaussian law having the same moments. It is classically shown that the
expectation value of a random variable N obeying a Poisson law of parameter
m is E[N ] = m, its variance being also V [N ] = m. On the other hand, during
the time interval ∆t, the energy deposited on the diode is

∆e = ηP∆t = NhPν

11



12 CHAPTER 1. THEORY OF GW INTERFEROMETERS

where P is the power of the light beam, and ν its frequency (hP is the Planck
constant). η is the quantum efficiency of the detector, a quantity very close
to 1 in present infra-red detectors, so that we shall ignore η in all the sequel.
In other words, consider P as the power actually detected. Now, it is clear
that there is an equivalence between saying that N is a random variable, and
saying that P is a random variable. Calling P0 the averaged value of P , we
see that

E[N ] =
P0∆t

hPν

and consequently (Poisson) :

V [N ] =
P0∆t

hPν

It is now possible to consider the variance of P :

V [P ] = V [N ]
h2Pν

2

∆t2

=
P0hPν

∆t

The quantity 1/∆t may be regarded as the ideal bandwidth of the detector,
then the quantity P0hν appears as a white spectral density. We shall consider
in the sequel that given an incoming power P0, the two-sided spectral density
of power equivalent to shot noise is

S ′
P (f) = P0hPν (1.1)

The fact that the preceding formula gives actually the two-sided SD can be
shown as follows. On successive time slices of duration ∆t, the detected
energy (and consequently the averaged power) is a random variable of mean
P0, so that, calling x the statistical variable P −P0, x(t) defines a stationary
centered stochastic process. We can write the function x(t) as :

x(t) = xk for k∆t < t < (k + 1)∆t

The spectral density of any stationary centered process has the general defi-
nition :

Sx(Ω) = lim
T→∞

1

T
E



∣∣∣∣∣

∫ T

0
e−iΩtx(t) dt

∣∣∣∣∣

2
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If we choose T an integer multiple of ∆t, we get easily :

∫ T

0
e−iΩtx(t) dt =

n−1∑

k=0

xk e
−i(k+ 1

2
)Ω∆t∆t sinc(Ω∆t/2)

so that

∣∣∣∣∣

∫ T

0
e−iΩtx(t) dt

∣∣∣∣∣

2

=
∑

k,m

xkxm e−i(k−m)Ω∆t∆t2 sinc(Ω∆t/2)2

The variables xk are uncorrelated, so that

E[xkxm] = V [P ] δkm

and

E



∣∣∣∣∣

∫ T

0
e−iΩtx(t) dt

∣∣∣∣∣

2

 =

∑

k

V [P ]∆t2 sinc(Ω∆t/2)2

= n∆tV [P ]∆tsinc(Ω∆t/2)2

(with the definition: sinc(x) ≡ sin(x)/x), and with T = n∆t, this is finally

S ′
P (Ω) = P0 hPν sinc(Ω∆t/2)2

One easily sees that the total variance is recovered by integrating over neg-
ative and positive frequencies (and remembering that

∫∞
−∞ sinc(x)2 dx = π)

The single-sided spectral density is thus :

SP (Ω) = 2P0 hPν sinc(Ω∆t/2)2

The integration time ∆t can be chosen very short, so that the preceding
function is almost flat in the audio region, and the one sided spectral density
to be used in practical problems is simply :

SP (Ω) = 2P0 hPν

as for a white noise.



14 CHAPTER 1. THEORY OF GW INTERFEROMETERS

A

R

A AR T

B

B

Figure 1.1: Partially reflecting mirror

1.1.2 Partially reflecting mirrors

In interferometry, a light source provides a beam that is often split into
two or more waves propagating along different paths. It is mandatory to
take into account the phase jumps caused by reflection or transmission at a
mirror surface. We consider a mirror as a plane surface of vanishing thickness.
There are two complex numbers zR and zT expressing respectively the relative
reflected and transmitted waves. Namely, when a wave of complex amplitude
A reaches the mirror’s surface, we have (see Fig.1.1 for notation):

AR = zRA , AT = zTA

Conservation of the total power requires that

|zR|2 + |zT |2 = 1− p

where p expresses possible absorption (dissipation) in the mirror. For our
present purposes, it is mandatory to have a very small p (usually a few
ppm, i.e. a few 10−6). Requirements on the arguments of zR and zT come
from the mirror viewed as a 4 ports element. If a second wave of amplitude
B reaches the mirror coming from the opposite direction, the source of A
being switched off, it undergoes exactly the same processes with the same
coefficients (the mirror is invariant in a space reflection). When the two
amplitudes are present simultaneously, we have thus:

AR = zRA+ zTB
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BR = zTA+ zRB

Remark that we call AR the sum of all waves going to the left, and BR the
sum of all waves going to the right; we could as well call BT and AT the same
waves. If we consider the power balance, we must have

|AR|2 + |BR|2 = (1− p)
(
|A|2 + |B|2

)

on the other hand, using the preceding equations, we get

|AR|2 + |BR|2 =
(
|zR|2 + |zT |2

) (
|A|2 + |B|2

)
+ (zRzT + zRzT )

(
AB + AB

)

we therefore must have

(zRzT + zRzT )
(
AB + AB

)
= 0

for any couple (A,B) of complex numbers, which clearly requires

zRzT + zRzT = 0

or, in terms of arguments:

Arg(zR)− Arg(zT ) = (2n+ 1)
π

2
(n ∈ N)

In order to preserve power balance at each interference occuring at the surface
of a mirror, we must, in the calculation, take into account this phase jump
of π/2 between the reflected and the transmitted wave. One possible choice,
that will be kept throughout this document, is

zR = i r , zT = t

where (r, t) are real numbers verifying

r2 + t2 = 1− p

1.1.3 Elementary Michelson

A simple interferometer design is shown on Fig.1.2. The light coming from
a laser is split into two distinct paths ended by mirrors, then reflected and
recombined on the splitter where the interference occurs. We call rs and ts
the reflection and transmission coefficients of the splitter, and k the wave
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Laser
A

B
s

a

b

r

r 

1

2

r ts

Figure 1.2: A simple Michelson experiment

number (k ≡ 2π/λ, λ being the wavelength. The amplitude of the laser wave
is A and the outgoing is B :

B = − A rsts
(
r1e

2ika + r2e
2ikb

)
A

so that

BB = r2st
2
sAA

(
r21 + r22 + 2r1r2 cos[2k(a− b)]

)

where AA ≡ P0 may be identified as the laser’s power. Suppose now that
the device aims to measure a very small variation of the length of one arm.
For instance, the length of arm 1 is a = a0 + x(t), where |x(t)| ≪ λ. We can
consider for brevity that the splitter is well balanced and r2s = t2s = 1/2. The
outgoing power is P (t) ≡ BB, or :

P (t) = PDC +∆P (t)

with

PDC =
1

4
P0

(
r21 + r22 + 2r1r2 cosα

)

where α = 2k(a0 − b) is the static tuning of the interferometer. if x(t) = 0,
we see that the outgoing power can be controlled by α. If α = 2nπ ,

PDC,b =
(r1 + r2)

2

4
P0
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which is almost 1 if both r1, r2 are reasonably near unity, we say that the
interferometer is tuned at a bright fringe, if now α = (2n + 1)π,

PDC,d =
(r1 − r2)

2

4
P0

which can be made as small as wanted by equalizing r1 and r2. We say that
the interferometer is tuned at a dark fringe. In practice, it is not so easy to
make r1 = r2, and this determines the contrast of the inteferometer. If x is
not zero, there is a time varying component

∆P (t) = r1r2P0kx(t) sinα

The question is now : What is the minimum variation x that we could detect,
knowing that there is a fluctuation of the power, even in the absence of signal,
due to shot noise. The answer is given by computing the signal to noise ratio
ρ :

ρ(f) =
S∆P (f)

SP (f)

The spectral density SP of power equivalent to shot noise is :

SP (f) =
1

2
P0hPν

(
r21 + r22 + 2r1r2 cosα

)

The spectral density of signal is :

S∆P (f) = r21r
2
2P

2
0 sin

2 α k2Sx(f)

where Sx(f) is the SD of x viewed as a stationnary process. We have thus

ρ(f) = 2r21r
2
2

P0

hPν
f(α) k2Sx(f)

where

f(α) =
sin2 α

r21 + r22 + 2r1r2 cosα

(see Fig.1.3). It is easily seen that the optimal value α0 is such that

cosα0 = − r<
r>
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Figure 1.3: Optimization of the SNR

where r< is the smallest of r1, r2 ,and r> the largest. One already sees that
if the two coefficients are close to 1 , the tuning of the interfometer is near a
dark fringe. When optimally tuned, we have

f(α0) =
1

r2>

so that the optimal SNR is

ρ(f) = 2r2<
P0

hν
k2 Sx(f)

The minimum detectable x can be evaluated by taking ρ = 1, and this gives

Sx(f)min =
1

2r2<

hPν

k2P0

It is more physical to consider the root spectral density :

S1/2
x (f) =

λ

4π

√
2hPν

P0
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where we have set r< ∼ 1. If further we assume that the small displacement
x(t) is caused by a gravitational wave h(t), we have

x(t) = Lh(t)

where L is the roughly equal arm lengths of the arms, and we have replaced
the motion of both mirrors of hL/2 by a unique motion of mirror 1 by hL.
The root spectral density of h equivalent to shot noise is finally:

S
1/2
h (f) =

λ

4πL

√
2hPν

P0

With the Virgo laser (P0 ∼ 20 W) and the wavelength λ ∼ 1.064µm of the
Nd:YAG amplifier, we get

S1/2
x (f) ∼ 1.2 × 10−17mHz−1/2

With a 3 km arm length, this gives

S
1/2
h (f) ∼ 3.8 × 10−21Hz−1/2

In fact, according to the theoretical litterature, this means that two orders of
magnitude are missing for having some hope to detect gravitational waves.
We shall see that these two orders can be gained by

• enhancing the laser power, not by upsizing the laser itself, but by cre-
ating a resonance surtension on the Michelson

• increasing the arm length, not by adding kilometers of tunnels, but by
creating a resonance in the 3 km arms

Creation and characterics of resonances are thus a very important item we
are going to analyze and discuss in details.

1.1.4 Frequency stability requirements

The shot noise is not the only limitation to laser metrology. The laser source
is not in practice a purely monochromatic source. The laser frequency is
determined by the optical length of the laser cavity, which means the distance
between mirrors, but also the index in the amplifier medium, and the index of
the medium in between mirrors and amplifier medium. All these parameters
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are in general coupled to external sources of mechanical or thermal noise, so
that the instantaneous frequency of the laser may be viewed as a random
process. We shall represent the laser optical amplitude as:

Alaser = A0 e−iω0t eiΨ(t)

where ω0/2π is the nominal frequency of the laser, and Ψ(t) a random cen-
tered process. The power reaching the photodetector is:

P (t) =
1

4

[
r21 + r22 + 2r1r2 cos[2k(b− a) + Ψ(t− 2a/c)−Ψ(t− 2b/c)]

]

We have thus a spurious phase:

φ(t) =
1

2
[Ψ(t− 2a/c)−Ψ(t− 2b/c)] =

1

2
[Ψ(t− (a+ b)/c+ (b− a)/c)−Ψ(t− (a+ b)/c− (b− a)/c)]

≃ b− a

c

∂Ψ

∂t
(t− (a+ b)/c)

assuming the difference d ≡ b− a small compared to the coherence length of
the laser. We have thus

φ(t) =
d

c
× 2πν(t)

where ν(t) is the instantaneous frequency. This implies that if we want to
reduce the corresponding phase noise to a level comparable to the shot noise,
which is:

φsn =

√
2hPν

P

we must obtain a spectral density of frequency noise:

δν(f) <
c

2πd

√
2hPν

P

we see the importance of having a good symmetry (a small d) between the two
arms. If we take the parameters already used above, the shot noise induced
phase was about 10−10Rd/Hz1/2, if we admit a 1% relative asymmetry, this
results in a requirement of

δν(f) < 2.10−4Hz/Hz1/2
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The realistic situation is even more demanding, because firstly we want a
safety margin of at least 1 order of magnitude with respect to the shot noise,
secondly the shot noise will be reduced by 1 order of magnitude by recycling,
and finally, the arm lengths will be seen to result from resonance effects, less
easy to symmetrize than actual geometrical lengths, so that the requirement
is rather in the range of 10−6Hz/Hz1/2.

1.2 The Fabry-Perot resonant cavity

1.2.1 Conventions used throughout this section

We assume a monochromatic light source, and we describe in the present
section the (ideal) light beam circulating inside the interferometer as a plane
wave, and moreover, we consider a given component of the electric field, so
that the optical field at any place x of an optical system is of the scalar form

A(t, x) = A(x) e−iωt

A simple propagation step along a path of length L in a vacuum is therefore
represented by a phase factor, and the relation between amplitudes will be

A(x+ L) = eikL A(x)

with k = ω/c = 2π/λ, c being the velocity of light. As seen above, when
a light ray encounters a mirror, it is partially reflected, transmitted and
absorbed. We keep the convention explicited above: Ain being the incoming
amplitude, Aref the reflected, Atrans the transmitted, we have :

Aref = ir Ain , Atrans = t Ain

r, t being respectively the reflection and transmission coefficients of the mir-
ror (real numbers).. We have the power balance :

r2 + t2 = 1− p

where p is the loss coefficient, accounting for absorption in the coating or
scattering into a different mode due to mirror geometrical imperfections (p
can be as low as a few ppm (10−6) for supermirrors as Virgo’s).
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Figure 1.4: a Fabry-Perot cavity

A Fabry-Perot cavity is made of two parallel mirrors. When light enters
the cavity through mirror M1, it is partially reflected and partially transmit-
ted. The transmitted wave is reflected by mirror M2, then returns to mirror
1 where it is recombined with the incoming wave and partially transmitted
to the exterior. On Fig.1.4, we have spatially separated the left and right
propagating waves for the sake of clarity. If the phase after a round trip in
the cavity allows it, the interference of the incoming wave and the returning
wave is constructive and a strong intracavity wave builds up. light can be
stored. We call ri, ti , pi (i = 1, 2), the parameters of the mirrors, and
Ain the incoming wave. The length of the cavity is L. We can write the
interference at M1 for the intracavity wave as :

B = t1Ain − r1r2 e
2ikLB

so that

B =
t1

1 + r1r2e2ikL
Ain

Clearly a resonance occurs when e2ikL = −1. We first discuss the case
when the length of the cavity is fixed, and the frequency of light variable.
The inverse case will be presented later. For a given L, we have a series of
resonant frequencies

νn =
(
n+

1

2

)
c

2L

The spacing between two successive resonances is called Free spectral Range
(FSR), and noted ∆νFSR.

∆νFSR =
c

2L

For a 3 kilometers cavity (as in VIRGO), the FSR is close to 50 kHz, whereas
the optical frequency (at λ = 1.06µm) is about 3 × 1014 Hz, so that the
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Figure 1.5: Surtension vs reflectivity of M1, assuming 10 ppm losses on each
mirror, and no transmission for M2

integer n is close to 6×109. The ratio S = B/Ain is called surtension factor
. Its maximum value is

Smax =
[

t1
1− r1r2

]2

Remark that if r2 is fixed, for instance because the end mirror is assumed
”Rmax”, the maximum surtension is a function of r1, which can take any
value between 0 and

√
1− p1. It is easily seen that the value of r1 for which

Smax is a maximum is:
ropt = (1− p1) r2

and the corresponding value of Smax is

Sopt =
1− p1

1− (1− p1)(1− p2)
∼ 1

p1 + p2

(see Fig.1.5). For r = ropt, the incoming light is entirely absorbed by the
cavity, the reflectance of which is zero (see below).

The width of the resonance line may be evaluated as follows. We assume
that the frequency is close a resonance, so that

ν = νn + δν
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with δν ≪ ∆νFSR. We have

2kL = (2n+ 1)π + 2π
δν

∆νFSR

The surtension coefficient takes on the form

S =
t1

1 − r1r2 exp
(
2iπ δν

∆νFSR

)

Its square modulus gives the ratio between the intensities :

|S|2 =
t21

(1− r1r2)2 + 4r1r2 sin
(
π δν

∆νFSR

)2

This is

|S|2 = S2
max × 1

1 +
[
2
√
r1r2

1−r1r2 sin
(
π δν

∆νFSR

)]2

Proximity of the resonance allows to replace the sine by its argument, so that

|S|2 = S2
max × 1

1 +
[
2F δν

∆νFSR

]2

with the following definition

F =
π
√
r1r2

1− r1r2
(1.2)

for the finesse of the cavity. The values of δν such that the surtension is half
its maximum are :

δν = ± ∆νFSR
2F

and the Full Width at Half Maximum (FWHM) of the resonance is finally :

δνFWHM =
∆νFSR

F
One can note that we have described the cavity by an extra set of parame-
ters F and ∆νFSR equivalent to r1r2 and L. F contains only a photometric
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Figure 1.6: Resonance line shape for a finesse of F = 10 (solid line), and
F = 100 (dotted line). Frequency unit is ∆νFSR

information about mirrors, whereas ∆νFSR contains a geometrical informa-
tion about the cavity. The exact expression for the resonance can be written
under the form

|S|2/S2
max =

1

1 +
[
2F
π

sin
(
π δν

∆νFSR

)]2

see Fig.1.6. The wave reflected off the cavity can be computed by

Aref = ir1Ain + ir2t1e
2ikLB

by substituting the value of B, we get

Aref = iRAin

Where R is the reflectance of the cavity, defined as

R =
r1 + (1− p1)r2 e

2ikL

1 + r1r2 e2ikL
(1.3)

For a cavity operated in the reflection mode, having a finite reflectivity
of the input mirror (M1), a high reflectivity end mirror (M2) and reasonable
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Figure 1.7: Absorption line of a cavity for r1=0.85 and r2=0.99998.(Finesse
F ≃ 19.3). A is the maximum of absorption.

losses (p1, p2), it can be seen that the global reflectance is about unity, with
a small peak of absorption at resonance. The phase of the reflected wave
undergoes a rapid transition of 2π when crossing the resonance (see Fig.1.7
and Fig.1.8). This is classical in all oscillators, and can be better understood
in a simplified model. Note that δν = ± 0.5×δνFWHM correspond to half the
maximum absorption and to a dephasing of ±π/2 with respect to resonance.
If now, the frequency of the light source is fixed and the length of the cavity
variable, which is ideally the case in a GW interferometer, instead of resonant
frequencies, we have resonant lengths given by

Ln =
(
n+

1

2

)
λ

2

showing that the displacement separating two successive resonances is :

∆LFSR =
λ

2

It is easy to show that the width of the resonance, in terms of displacement,
is

δLFWHM =
λ

4F
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Figure 1.8: Phase reflectance of a cavity for r1=0.85 and r2=0.99998

We develop now an approximate model of a cavity relying on the fact that
the finesse is large compared to unity. It will prove useful for our further
discussions of more complex systems involving cavities. A key parameter is
indeed the finesse, defined by eq.(1.2) and depending only on the parameter
r1r2. Conversely, it is possible to compute r1r2 from F :

r1r2 = 1− π

F

√

1 +
π2

4F2
− π2

2F2

If F is much larger than 1, we can limit the expression at the first order in
1/F , and take

r1r2 = 1− π

F
Consider now the reflectance of the cavity Eq.(1.3), and the phase factor 2kL.
We assume a frequency ν that is slightly detuned with respect ot resonance
by an amount δν so that :

2kL = 2k0L+ 2π
δν

∆νFSR
= π + 2π

1

F f

where the reduced frequency f is the ratio of the offset to linewidth :

f ≡ δν

δνFWHM



28 CHAPTER 1. THEORY OF GW INTERFEROMETERS

with 2k0L ≡ π mod[2π], we have :

r2R =
r1r2 − (1− p1)r

2
2 e

2iπf/F

1− r1r2 e2iπf/F
(1.4)

We set (1− p1)r
2
2 = (1− p), where p accounts for all losses in the cavity. By

expanding r2R at first order in 1/F we get :

r2R = − 1− pF/π + 2if

1− 2if

The quantity σ = pF/π is called coupling rate and it is easily seen that
0 < σ < 2. We have indeed obviously

0 < r21 < 1− p1

→ 0 < r21r
2
2 < (1− p1)r

2
2 = 1− p

then, assuming p very small,

→ 0 < r1r2 <
√
1− p = 1− p/2

whence

0 < 1− π

F < 1− p/2

→ 0 <
pF
π

< 2

Most of the properties of the FP cavity can be known by only knowing its
coupling rate. The reflectance of the cavity can thus be written (by putting
r2 ≃ 1 at this point) :

R = −1− σ + 2if

1− 2if

We see that the reflectance at resonance is

R(0) = −(1− σ)

so that σ = 1 corresponds to total absorption of light, or optimal coupling.
For σ running from 0 to 1 the cavity is overcoupled, this means that, at
resonance, the incoming field is increasingly absorbed by the cavity until
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Figure 1.9: Transition from over to undercoupling. (NB : For σ=1, there is
no reflected wave)

total absorption. then past 1, the field is decreasingly absorbed until total
reflection. The intensity reflection coefficient is :

|R|2 = 1− σ(2− σ)

1 + 4f 2

The reflected phase is :

Arg [R] = π + tan−1

(
2f

1− σ

)
+ tan−1 (2f) (1.5)

Increasing values of σ progressively decouples the cavity from the incoming
field, the reflectivity becomes near unity (because the input mirror becomes
the only part of the FP visible from the exterior) , and the reflected phase
becomes more and more unsensitive to frequency detuning (see Fig.1.9). Note
that the coupling is strong when the coupling constant is weak, and vice-
versa. We should better therefore, call σ the undercoupling constant, but we
keep the present definition for the sake of brevity. The surtension coefficient
is defined by

S =
t21

|1 + r1r2e2ikL|2
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In the coupling rate notations, it becomes

S =
σ(2− σ)

p (1 + 4f 2)

showing that the maximum of intracavity power is reached at optimal cou-
pling (σ = 1). In general, at resonance we have therefore

S0 =
2F
π

(
1− σ

2

)

and simply

S0 =
2F
π

in the strong overcoupling regime (σ ≪ 1). The phase reflectance (see eq.1.5)
is

Φ(f) = π + tan−1

(
2f

1− σ

)
+ tan−1(2f)

For f very small, this is at first order :

Φ(f) =
2(2− σ)

1− σ
f =

2(2− σ)

1− σ
F δν

∆νFSR

In terms of the coupling rate, and absolute frequency detuning, the slope of
Φ(δν) is

dΦ

dδν
=

2σ(2− σ)

1− σ

π

p∆νFSR
In terms of the coupling rate and absolute displacement of the mirrors, we
have the slope

dΦ

dδL
=

2σ(2− σ)

1− σ

2π

p λ

It could seem that the optimum detectivity is near the optimal coupling,
where the slope is a maximum. The infinite slope at optimal coupling is
very appealing, but unfortunately corresponds to total absorption, so that
there is no reflected wave... This will be discussed later, in the Michelson
interferometer section, when we shall study the conversion of a phase change
into an amplitude change, detectable by a diode. If the coupling rate is small
(i.e. the losses small and the finesse moderate), which is the current case in
GW interferometers, the slope is simply :

dΦ

dδL
=

8F
λ



1.2. THE FABRY-PEROT RESONANT CAVITY 31

This allows to find a relation with an equivalent number n of non interfering
round trips in a multipass cell of same length : in such a situation, the slope
would be:

dΦ

dδL
=

4πn

λ

so that
n ∼ 2F/π

note that this is exactly the surtension at resonance :

n = S0

In the undercoupling regime (1 < σ < 2), the phase reflectance has two
extrema, for

f = ±1

2

√
σ − 1

these two extrema being

Φ = ± tan−1

(
2− σ

σ
√
σ − 1

)

showing that the phase reflectance becomes flat as σ → 2.

1.2.2 The Pound-Drever scheme

As a first example of application of this simple model of a reflection operated
cavity, we consider the so-called Pound-Drever servo scheme, in which the
goal is to keep a given light source in resonance with a reference cavity. In
order to act for correction upon the frequency of the source, an error signal is
needed. It is obtained by a modulation technique : the light source is phase
modulated at frequency νmod, which means that after passing the modulator
crystal, the amplitude entering the cavity is of the form :

A(t) = A0 exp [iǫ cos(2πνmodt)]× exp[−2iπνLt]

where νL is the frequency of the source, i.e. the variable to be servoed. ǫ
is the modulation depth, and if it is small, we can expand at first order the
preceding expression, yielding

A(t) = A0 e
−2iπνLt + i

ǫ

2
A0 e

−2iπ(νL+νmod)t + i
ǫ

2
A0 e

−2iπ(νL−νmod)t
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We can recognize in this sum, the carrier and two sidebands added by the
modulator. Each of these three waves is differently reflected by the cavity.
If we call B(t) the reflected amplitude, we have :

B(t) = A0

[
R e−2iπνLt + i

ǫ

2
R+ e−2iπ(νL+νmod)t + i

ǫ

2
R− e−2iπ(νL−νmod)t

]

where R represents the reflectance of the cavity for the carrier, and R± the
reflectance for the two sidebands. This amplitude is partially directed to a
photodiode delivering thus a current proportional to

B(t)B(t) = A0A0

[
RR − i

ǫ

2
(RR− −RR+)e

−2iπνmodt − i
ǫ

2
(RR+ − RR−)e

2iπνmodt
]

The demodulation consists in mixing the latter current with the modulation
current with a variable dephasing Φ. The demodulation current is :

D(t) = eiΦe2iπνmodt + e−iΦe−2iπνmodt

For Φ=0, the demodulation is said in phase, and in quadrature for Φ = π/2.
The demodulated signal is the product BB ×D, and considering that a low
pass filter retains only the DC terms in the result, we get for the demodulated
filtered current (DFC) :

DFC = i
ǫ

2
A0A0

[
eiΦ(RR+ − RR−) + e−iΦ(RR− −RR+)

]

The approximate model presented above allows to compute this expression.
We have, denoting by f the offset of the source frequency with respect to
resonance in linewidth units :

R = − 1− σ + 2if

1− 2if

It is assumed that f does not exceed 1. Now for the sidebands, we assume
the modulation frequency antiresonant, i.e. such that it is shifted by half
a FSR from resonance. At antiresonance, the reflectance of the cavity, and
consequently R±, is practically 1, so that the DFC becomes explicitly :

DFC = i
ǫ

2
A0A0

[
X eiΦ +X e−iΦ

]

with
X = R − R
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Figure 1.10: Pound-Drever error signal for laser stabilization on a reference
cavity

or finally

X =
4i(2− σ) f

1 + 4f 2

This shows that the demodulation must be in quadrature. The error curve
has the following appearance (see Fig.1.10). Note that the frequency interval
between the two extrema is nothing but the FWHM of the resonance. We see
that there exists a range of frequency on which the error signal is practically
proportional to the frequency excursion, and this is the starting point of the
Pound-Drever-Hall technique for servoing cavities on laser light or conversely.

1.2.3 The double Fabry-Perot cavity

It is interesting to investigate what happens when we install a Fabry-Perot
cavity inside a Fabry-Perot cavity, because it is the basis of the so-called
”power recycling” setup, used in GW interferometers for enhancing the laser
power, that we shall discuss in details in a foregoing section. The system
we are considering is described on Fig.1.11: it consists of three mirrors, M1,
M2, M3, spaced by distances l and L. We assume L ≫ l. This offers us the
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Figure 1.11: Double Fabry-Perot

opportunity to calculate the transmittance of a Fabry-Perot cavity having
mirrors M1, M2. Call r1, r2, t1, t2 the corresponding parameters, and for
the sake of simplicity, let us neglect the losses, and in the same spirit, take
r3 = 1. We can write the stored amplitude when M3 is removed:

B = A
t1

1 + r1r2 e2ikl

as already seen. Now the amplitude tranmitted through mirror M2 in absence
of mirror M3 defines the transmittance:

T =
t1t2e

ikl

1 + r1r2 e2ikl

whereas the reflectance for a wave coming from the right is, according to a
preceding study:

R =
r2 + r1e

2ikl

1 + r1r2 e2ikl

For the compound cavity, we can evaluate the amplitude C just as we would
do for a cavity having a virtual mirror of parameters R, T , and an end
mirror M3:

C =
T

1 +R e2ikL
A

Now the question is: How to choose the phases 2kl and 2kL in order to
maximize the intracavity power |C|2 ? It is worth to compute explicitly the
result:

C =
t1t2 e

ikl

1 + r1r2 e2ikl + e2ikL (r2 + r1 e2ikl)
A
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we see that for 2kl ≡ 0 [mod 2π], and 2kL ≡ π [mod 2π], we get

|C|2 =
t21t

2
2

(1− r1)2(1− r2)2
|A|2

which is clearly the maximum value. It means that the short cavity must be
antiresonant, and the long one resonant. We can write the result as a global
surtension:

S0 =

[
|C|2
|A|2

]

reso

=
(1 + r1)(1 + r2)

(1− r1)(1− r2)

We know that a cavity at antiresonance is far more reflective than any of its
two simple mirrors: if we assume r1 = 1−ε1 and r2 = 1−ε2, with ε1, ε2 ≪ 1,
we have

Rantireso = R0 =
r1 + r2
1 + r1r2

∼ 1− ε1ε2
2

which shows that the global transmittance is second order with respect to the
individual transmittances. Moreover, we know that both the transmittance
and the reflectance of an antiresonant cavity are almost independent on the
frequency over a large interval in between two successive resonances. If we
assume L≫ l, the free spectral range ∆L of the long cavity is much shorter
than that ∆l of the short cavity. If we therefore take a frequency excursion
δν small compared to ∆L, it will be a fortiori small compared to ∆L, and
owing to the preceding remark, we can consider T and R as constants. Its is
easy to check that the phase of R changes by a negligible amount. We have:

2kl = 2π
δν

∆l

so that

R =
r2 + r1 + 2iπr1δν/∆l

1 + r1r2 + 2iπr1r2δν/∆l

= R0

1 + 2iπ r1
r1+r2

δν
∆l

1 + 2iπ r1r2
1+r1r2

δν
∆l

= R0

{
1 + 2iπ

δν

∆l

[
r1(1− r22)

(r1 + r2)(1 + r1r2)

]}

thus, not only δν/∆l is much smaller than δν/∆L, but it is multiplied by
(1− r2). We can consequently definitely neglect the phase change in R. We
have

2kL ≡ π + 2π
δν

∆L
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and the surtension is

S =
|C|2
|A|2 =

|T |2
|1−Re2iπδν/∆L |2

where R, T have their antiresonant values. This is:

S =
T 2

1 +R2 − 2R cos
(
2π δν

∆L

)

= S0
1

1 + 4R sin2(πδν/∆L)
(1−R)2

If we replace the sine by its argument, this gives:

S = S0
1

1 +
(
2Fsuper

δν
∆L

)2

where Fsuper is the superfinesse, defined by

Fsuper ≡ π
√
R

1−R
The linewidth is accordingly:

δL =
∆L

Fsuper

For instance, assume the length of the long cavity to be L = 3 km. The free
spectral range is thus ∆L ∼ 50 kHz. If we put a simple input mirror with
reflectivity r22 = 0.882, the finesse is near 50, so that the linewidth of the
cavity is near 1 kHz. Now if we add a second mirror, of same reflectivity r21 =
0.882 and if we tune the short cavity at antiresonance, we get a reflectance
of 0.998 for the short cavity, giving a superfinesse of 1595, and a linewidth
of ∼ 31 Hz.

1.3 Optics in a wave Space-Time

1.3.1 Retarded time in a GW - Simplified picture

When studying gravitational waves (GW), some arbitrary in the choice of the
coordinates allows simplifications by partially removing this arbitrariness. In
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the so-called TT-gauge, the Space-Time metrics is of the form

gµν = ηµν + hµν

where ηµν = diag(1,−1,−1,−1) is the Minkowski tensor of Special Relativ-
ity, and hµν ≪ 1 the gravitational perturbation propagating as a wave. This
tensor reduces to two independent components, called h+ and h×. Assume
that the GW is propagating along the z direction, then we have :

hµν =




0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0




We shall assume in what follows that the z direction is orthogonal to the plane
of the optics laboratory (or of the antenna), and consider the propagation
of a light ray along the x, y directions. We know that in a vacuum, light
follows a null geodesic, i.e. if dxµ represents the space-time elementary vector
separating two events encountered by the light ray, we can write :

gµν dx
µdxν = 0

or in detail, taking dxµ = (c dt, dx, dy, dz),

0 = c2dt2 − dx2 − dy2 − dz2 + 2h×dx dy + h+
(
dx2 − dy2

)

where h+,× are functions of t, z only. It can be shown that there is no change
of direction of the light ray during its interaction with the GW as long as the
GW frequency is negligible compared to the EM frequency, which is safely
verified for known GW sources. In this case, the only effect is a phase change
during propagation. Let us see this in detail : For a path lying along the x
direction we have simply :

0 = c2dt2 − dx2 + h+dx
2

or as well, h+ being so small,

dx = ±cdt
[
1 +

1

2
h+(t)

]
(1.6)

where the sign depends obviously on the propagation direction. Now, con-
sider the round trip experiment, in which a light ray is firstly emitted from
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abscissa 0 at time t0, then received at abscissa L > 0 at time t1 : we have
using (1.6) with the + sign :

L = c(t1 − t0) +
1

2
c
∫ t1

t0
h+(u) du

then the light ray is reflected back and returns to the origin at time t2, we
have then, using again (1.6) but with the - sign :

−L = c(−t2 + t1)−
1

2
c
∫ t2

t1
h+(u) du

by subtracting the last equation to the preceding, we get

2L = t2 − t0 +
1

2
c
∫ t2

t0
h+(u) du

In the sequel we shall omit the index + in the GW amplitude and write
simply h(t) instead of h+(t). Assume now that t2 = t is the detection time,
and t0 = tr the unknown time at which the light ray was emitted (retarded
time). We have the relation :

tr = t − 2L

c
+

1

2

∫ t

tr
h(u) du

This is an implicit equation in tr but very easy to solve at first order in h :

tr = t − 2L

c
+

1

2

∫ t

t−2L/c
h(u) du

If we consider a monochromatic wave of frequency νg = Ω/2π, such that
h(t) = h cos(Ωt), the result is

tr = t − 2L

c
+ h

L

c
sinc(ΩL/c) cos (Ω(t− L/c))

Clearly the result is identical for a round trip along the y axis, except that
the first order term must be changed of sign. We have generally :

tr = t − 2L

c
+ ǫh

L

c
sinc(ΩL/c) cos (Ω(t− L/c))

where ǫ = 1 along the x axis and ǫ = −1 along the y axis. One way
of detecting gravitational waves could be to measure the excess time delay
between emission and back detection of light. Some experiments have been
proposed using this principle, for instance by analyzing solar system radar
ranging data (in the microwave domain, but the principle is the same).
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1.3.2 Retarded time in a GW - General picture

The preceding analysis assumed a normally incident gravitational wave, hav-
ing an optimal polarization state. The results found are useful in order to
determine signal-to-noise ratios, as will be done later. A quite different pur-
pose is to analyze the angular response of an antenna. We shall therefore
assume now a gravitational signal propagating along a direction (θ, φ). We

know that there exist a coordinate system defined by the basis (~w, ~a, ~b)
(we assume the basis orthonormal), in which the perturbation to the metric
tensor is

hµν =




0 0 0 0
0 h+(t) h×(t) 0
0 h×(t) −h+(t) 0
0 0 0 0




we use the vector ~w used above, and vectors ~θ, ~φ, defined as

~w =



sin θ cosφ
sin θ sinφ

cos θ


 , ~θ =



cos θ cosφ
cos θ sinφ
− sin θ


 , ~φ =



− sinφ
cosφ
0




these unit vectors build an orthonormal frame. The transverse vectors (~a, ~b)

are related to (~θ, ~φ) by some rotation of angle ψ :

{
~a = cosψ ~θ − sinψ ~φ
~b = sinψ ~θ + cosψ ~φ

In terms of the basis vectors (~w, ~a, ~b), the spatial part of hµν can be expressed
as

hij = h+(aiaj − bibj) + h×(aibj + ajbi)

In terms of vectors (~θ, ~φ), we get :

hij = (h+ cos 2ψ+h× sin 2ψ)(θiθj−φiφj)+(−h+ sin 2ψ+h× cos 2ψ)(θiφj+θjφi)

which shows that up to a rotation, we can express the wave amplitude (with
new h+,×) as

hij = h+(θiθj − φiφj) + h×(θiφj + θjφi)

This being said, consider now a light ray starting from point A (of coordinates
~rA), going to point B (of coordinates ~rB) and returning to A. We denote by
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L the ordinary (i.e. in the unperturbed space) distance from A to B. The
general expression of the space-time element is

ds2 = c2dt2 − d~r2 − hijdx
idxj

for a trip from A to B
~r = ~rA + λ~n

where 0 ≤ λ ≤ L and ~n is the unit vector directed along AB. Along the path
of a photon from A to B, we have thus :

0 = c2dt2 − dλ2 − hijn
injdλ2

from what we obtain

dλ = ±c dt
[
1 +

1

2
H(t− ~w.~r/c)

]

where H ≡ hijn
inj . If the trip begins at time tr, the position ~r of the photon

can be parametrized by

~r(t) = ~rA + c(t− tr)~n

so that

dλ = ±c dt
{
1 +

1

2
H [t− ~w. (~rA + c(t− tr)~n)]

}

If we denote by tm the time of arrival at B, we get, after integration :

L = c(tm − tr) − c

2

∫ tm

tr
H [(1− ~w.~n)t′ − ~w.~rA/c+ ~w.~n tr] dt

′ (1.7)

during the return trip from B to A, the position of the photon is now
parametrized by

~r(t) = ~rA − c(t− tm)~n

and after a similar calculation, we get

−L = −c(t− tm) +
c

2

∫ t

tm
H [(1 + ~w.~n)t′ − ~w.~rB/c− ~w.~n tm] dt

′ (1.8)

By subtracting (1.8) from (1.7), we get :

2L = c(t− tr) − c

2

∫ tm

tr
H [(1− ~w.~n)t′ − ~w.~rA/c+ ~w.~n tr] dt

′ −



1.3. OPTICS IN A WAVE SPACE-TIME 41

− c

2

∫ t

tm
H [(1 + ~w.~n)t′ − ~w.~rB/c− ~w.~n tm] dt

′

At zeroth order in h, we have

tm = t− L/c , tr = t− 2L/c

So that the expression of the retarded time is :

tr = t− 2L

c
− 1

2

∫ t−L/c

t−2L/c
H [(1− ~w.~n)t′ − ~w.~rA/c+ ~w.~n (t− 2L/c)] dt′ −

− 1

2

∫ t

t−L/c
H [(1 + ~w.~n)t′ − ~w.~rB/c− ~w.~n (t− L/c)] dt′ (1.9)

Consider now a particular gravitational frequency fg = Ω/2π, we have

H(t) =
1

2

[
H e−iΩt +H eiΩt

]

We can write eq.1.9 under the form

tt = t− 2L

c
− 1

4

(
H∆tr +H∆tr

)

where

∆tr =
∫ t−L/c

t−2L/c
exp {−iω [(1− ~w.~n)t′ − ~w.~rA/c+ ~w.~n (t− 2L/c)]} dt′ +

+
∫ t

t−2L/c
exp {−iω [(1 + ~w.~n)t′ − ~w.~rB/c− ~w.~n (t− L/c)]}

after some straightforward algebra, we find

∆tr =
L

c
e−iΩ(t−L/c)eiΩ~w.~rM/c

{
eiΩL/2csinc [(1− ~w.~n)ΩL/2c] +

+e−iΩL/2csinc [(1 + ~w.~n)ΩL/2c]
}

where ~rM = (~rA + ~rB)/2 epresents the coordinates of the middle of the seg-
ment AB. Note that in the case where ~w is orthogonal to the plane containing
the optical path, and assuming this plane to contain the origin of the coor-
dinates, we have ~w.~n = ~w.~rM = 0, so that

∆⊥
r =

2L

c
e−iΩ(t−L/c) sinc(ΩL/c)
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exactly as in the preceding subsection. Now, returning to eq.1.9, we can
write it under the compact form

tr = t− 2L

c
− 1

2
H
L

c
ξ(~rM , θ, φ)e

−iΩ(t−L/c) − 1

2
H
L

c
ξ(~rM , θ, φ) e

−iΩ(t−L/c)

where the function ξ is defined, for the sake of brevity by

ξ(~rM , θ, φ) =
1

2
eiΩ~w.~rM/c

[
eiΩL/2csinc [(1− ~w.~n)ΩL/2c] +

+e−iΩL/2csinc [(1 + ~w.~n)ΩL/2c]
]

Now, if we assume

h+,×(t) =
1

2

(
h+,×e

−iΩt + h+,×e
iΩt
)

we can write

H = h+
[
(~θ.~n)2 − (~φ.~n)2

]
+ 2 h× (~θ.~n)(~φ.~n)

Let us now consider a whole interferometer, having arms directed along the
x and y directions respectively. Along the north arm (x), for instance, we
have a unit vector ~n1, and along the west arm (y), a unit vector ~n2. If we
note ~r0 the coordinates of the splitter, we have for the middles of the north
and west arms respectively :

~rM,1 = ~r0 + ~n1L/2 , ~rM,2 = ~r0 + ~n2L/2

so that apart from a common phase factor we can drop out by changing the
origin of the time, we have the north and west functions :

ξ1,2 =
1

2
eiΩ~w.~n1,2L/2c

[
eiΩL/2csinc [(1− ~w.~n1,2)ΩL/2c] +

+e−iΩL/2csinc [(1 + ~w.~n1,2)ΩL/2c]
]

The same way, we have the north and west gravitational amplitudes

H1,2 = h+
[
(~θ.~n1,2)

2 − (~φ.~n1,2)
2
]
+ 2 h× (~θ.~n1,2)(~φ.~n1,2)

And the north and west excesses in round trip dephasing for an optical wave
of circular frequency ω is : can be written as :

∆Φ1,2 =
ωL

2c
H1 ξ1e

−iΩteiΩL/c + c.c.
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The Michelson topology is essentially designed for monitoring ∆Φ1 − ∆Φ2,
and consequently, if we are interested in the directivity pattern of a Michel-
son, whatever the various enhancements will be, the antenna pattern will be
given by

Ξ(θ, φ) = |H1ξ1 −H2ξ2|
we have explicitly

H1 = h+(cos
2 θ cos2 φ− sin2 φ)− h× cos θ sin 2φ

H2 = h+(cos
2 θ sin2 φ− cos2 φ) + h× cos θ sin 2φ

and also (α ≡ ΩL/2c) :

ξ1 =
1

2
eiα sin θ cosφ

{
eiαsinc [(1− sin θ cos φ)α] + e−iαsinc [(1 + sin θ cosφ)α]

}

ξ2 =
1

2
eiα sin θ sinφ

{
eiαsinc [(1− sin θ sin φ)α] + e−iαsinc [(1 + sin θ sinφ)α]

}

At high frequencies, when α = ΩL/2c is not negligible, we have a frequency
dependent antenna pattern. For arms as long as 3 km, we have at 1 kHz,
α = π/100, so that the dependence of the ξ’s in frequency can be neglected,
and we can take simply ξ1 = ξ2 = 1, so that

Ξ(θ, φ) ≃ |H1 −H2|

or,
Ξ(θ, φ) = | h+(1 + cos2 θ) cos 2φ− 2h× cos θ sin 2φ |

In the case of purely h+ sources (binaries in a plane perpendicular to the line
of sight), we have the following pattern (see fig.1.12).

1.3.3 The A133 Algebra

Let us now turn to wave optics. Our light ray is in fact a monochromatic
plane wave of frequency ν = ω/2π. Call B(t) the (complex) amplitude at
the end of the round trip, and A(t) its value at the beginning. We have

B(t) = A(tr)

If we note
A(t) = Ae−iωt
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Figure 1.12: Directivity pattern for h+ sources. Angle θ runs from 0 to π,
angle φ from −π/2 to π/2.
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we get

B(t) = Ae−iωtr = Ae−iω(t−2L/c) exp
[
ih
ωL

c
sinc(ΩL/c) cos (Ω(t− L/c))

]

Since we are always at first order in h, we write

B(t) = Ae−iωte2iωL/c +

i
2
hA ωL

c
sinc(ΩL/c) e2iωL/ceiΩL/ce−i(ω+Ω)t +

i
2
hA ωL

c
sinc(ΩL/c) e2iωL/ce−iΩL/ce−i(ω−Ω)t

It clearly appears that the action of the GW was to create two sidebands of
very low amplitude, of frequencies ν ± νg from one single frequency ν. Now
let us see what happens if the incoming optical wave is already modulated
and exhibits two sidebands. This is necessary because in interferometers,
light undergoes several times the action of the GW in order to enhance the
signal production. Let the incoming amplitude be of the form

A(t) =
(
A0 +

1

2
hA1e

−iΩt +
1

2
hA2e

iΩt
)
e−iωt

The scaling factor is h because we assume the GW to be the only cause of
generation of sidebands in the whole (unknown) optical system. We have
then

B(t) = A(tr) =
[
A0 +

1

2
hA1e

−iΩte2iη +
1

2
hA2e

iΩte−2iη
]
×

× e−iωte2iξe−iǫhξsinc(η) cos(Ωt−η)

For shortening the formula, we have used the abbreviations: ξ ≡ ωL/c and
η ≡ ΩL/c. After a 1st order expansion of the exponential, we get

B(t) =
(
B0 +

1

2
hB1e

−iΩt +
1

2
hB2e

iΩt
)
e−iωt

with the following notation :

B0 = e2iξA0

B1 = e2i(ξ+η)A1 − iǫξsinc(η)ei(2ξ+η)A0
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B2 = e2i(ξ−η)A2 − iǫξsinc(η)ei(2ξ−η)A0

We see that if we define “generalized amplitudes” as rank 3 vectors having the
carrier amplitude, the upper sideband and the lower sideband respectively
as coordinates, by setting

A = (A0, A1, A2)

and
B = (B0, B1, B2)

the amplitude after a round trip that we have precedently computed may be
written in the form :

B = XA
where X is the linear round trip operator defined as

X =




e2iξ 0 0
−iǫξsinc(η)ei(2ξ+η) e2i(ξ+η) 0
−iǫξsinc(η)ei(2ξ−η) 0 e2i(ξ−η)


 (1.10)

It is easy to check that the set of all operators having the form

O =



O00 0 0
O10 O11 0
O20 0 O22




is stable for any algebraic operation, and even may be given a structure of
non-commutative algebra isomorphous to the algebra of first order expan-
sions. We call it “A133” for brevity. The basic algebraic operations are
defined by

• The sum :
(A+B)ij = Aij + Bij

• The product :
(A B)ii = AiiBii

(A B)i0 = Ai0B00 + AiiBi0

• The inverse :

(A−1)ii =
1

Aii

(A−1)i0 = − Ai0

A00 Aii
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An A133 operator may be associated to any optical element of a complex
optical system. The diagonal elements Oii represent action of that element
on the carrier and the sidebands. Often (mirrors, lenses) there is no fre-
quency dependence because the gravitational perturbation causes a negli-
gible frequency shift, well inside the tolerances of the mirror coatings, and
in this case, the corresponding operator is simply scalar. In fact the only
non-diagonal operators are those corresponding to propagation of light in
a vacuum over long distances. The result is that, after some (A133) alge-
bra, the whole optical system has an associated A133 operator describing its
behaviour.

1.4 Signal to Noise Ratio

We can start with a pure monochromatic wave

Ain = (A, 0 , 0)

S being the A133 system operator, we know that the output wave is given
by :

Aout = A

[
S00 +

h

2
S10 e

−iΩt +
h

2
S20 e

iΩt

]
e−iωt

The corresponding detectable power is, up to a normalization factor, and
calling Pin the incoming power :

P (t) = AoutAout =

= Pin

[
|S00|2 +

h

2

(
S10S00 + S20S00

)
e−iΩt +

h

2

(
S20S00 + S10S00

)
eiΩt

]

The signal amplitude at frequency νg is thus

S(νg) = |S10S00 + S20S00|

The DC component of the output is proportional to |S00|2, so that our main
concern, the SNR is proportional to :

SNR(νg) ∝ |S10 e
−iϕ00 + S20 e

iϕ00 |
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where ϕij is the argument of Sij. We have as well, with the correct normali-
sation :

SNR(νg) =

√
Pin

2hPν
||S10|+ |S20| ei(ϕ10+ϕ20−2ϕ00)| h(νg) (1.11)

Inversely, the spectral density hSN(νg) equivalent to the quantum noise is
obtained by taking a unitary SNR :

hSN(νg) =

√
2hPν

Pin

|S00|
|S10S00 + S20S00|

We see that evaluation of the SNR of any optical GW detector eventually
reduces to calculation of the Si0 of the whole system.

1.5 Resonant cavities in a GW

The first element we need, before addressing more complex structures, is
the A133 operator associated to a Fabry-Perot cavity. We take the same
notations as in Fig.1.6. The intracavity (vector) amplitude B obeys:

B = t1Ain − r1r2XB

where X is the round trip operator just defined above (Eq.1.10). We have
thus

B = [1 + r1r2X]−1 t1Ain

The reflected amplitude is :

Aref = i r1Ain + i t1r2XB

= i [r1 + (1− p1)r2X] [1 + r1r2X]−1 Ain

so that the reflectance of the cavity is the operator

F = [r1 + (1− p1)r2X] [1 + r1r2X]−1 (1.12)

It is possible to compute the components of F :

F =



F 0 0
G+ F+ 0
G− 0 F−
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F is the ordinary reflectance of the FP for the carrier, F± the ordinary
reflectance of the FP for the upper and lower sidebands respectively. For the
sake of simplicity, we use again the notation :

ξ = kL
η = ΩL/c

(recall that Ω/2π is the GW frequency). We have then, after direct evaluation
of F according to Eq.1.12 :

F =
r1 + (1− p1)r2e

2iξ

1 + r1r2e2iξ

F± =
r1 + (1− p1)r2e

2i(ξ±η)

1 + r1r2e2i(ξ±η)
(1.13)

G± = −iǫ t21r2ξsinc(η)e
i(2ξ±η)

(1 + r1r2e2iξ) (1 + r1r2e2i(ξ±η))
(1.14)

In the coupling rate (σ) formalism, this can be approximated by

F = −1− σ + 2i∆f

1− 2i∆f
(1.15)

F± = −1− σ + 2i(∆f ± fg)

1− 2i(∆f ± fg)
(1.16)

G± = iǫ
2FL
λ

2− σ

(1− 2i∆f) [1− 2i(∆f ± fg)]
(1.17)

where ∆f = δν/δνFWHM is the reduced detuning of the light source from
resonance, and fg = νg/δνFWHM the reduced gravitational frequency. When
we vary the detuning, we see that the modulus of G+ has a resonance for
∆f = 0 (resonance of the carrier) and a second resonance when ∆f = −fg,
the upper sideband becoming resonant. The modulus of G− has also a res-
onance for ∆f = 0 and for ∆f = fg, the lower sideband becoming resonant
(see Fig.1.13). A symmetrical figure can be obtained with |G+|.
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Figure 1.13: Efficiency of lower sideband generation vs detuning of the source
for three reduced GW frequencies. Solid line :fg = 0, short dashed line :
fg = 1, long dashed line : fg = 2

1.6 Michelson Interferometer involving FP cav-

ities

We take the classical Michelson geometry, but replace the end mirrors by
two identical Fabry-Perot cavities, F1 and F2. Note that even when optically
identical, the effect of a GW on them will be different, and consequently we
must denote the corresponding operators by different notations (see Fig.1.14).
We neglect in this first aapproach, small phases of order 2πνga/c. The trans-
mitted amplitude is

Atrans = −rsts
(
e2ikaF1 + e2ikbF2

)
Ain

whereas the reflected amplitude is

Aref = i
(
t2se

2ikaF1 − r2se
2ikbF2

)
Ain

Note that we neglect phases of the order of 2πνga/c. The expressions of F1

and F2 for perfectly identical but orthogonal cavities lying respectively along
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Figure 1.14: Geometry of a Michelson with FP cavities

the x and y directions, are :

F1 =



F 0 0
G+ F+ 0
G− 0 F−


 , F2 =




F 0 0
−G+ F+ 0
−G− 0 F−




The opposite signs of the off-diagonal elements reflect the signature of a +
polarized gravitational wave having the x, y axes as polarization directions.
We can define a transmittance and a reflectance A133 operator an obvious
way, by

Atrans = TMicAin

Aref = iRMicAin

The elements of these operators are as follows, assuming a perfectly symmet-
rical splitter (rs = ts =

√
1− ps/2), for the transmittance:

TMic,00 = −(1− ps)e
ik(a+b) cos[k(a− b)]F

TMic,11 = −(1− ps)e
ik(a+b) cos[k(a− b)]F+

TMic,22 = −(1− ps)e
ik(a+b) cos[k(a− b)]F−

TMic10 = −i(1 − ps)e
ik(a+b) sin[k(a− b)]G+

TMic20 = −i(1 − ps)e
ik(a+b) sin[k(a− b)]G−
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and for the reflectance :

RMic,00 = i(1− ps)e
ik(a+b) sin[k(a− b)]F

RMic,11 = i(1− ps)e
ik(a+b) sin[k(a− b)]F+

RMic,22 = i(1− ps)e
ik(a+b) sin[k(a− b)]F−

RMic,10 = (1− ps)e
ik(a+b) cos[k(a− b)]G+

RMic,20 = (1− ps)e
ik(a+b) cos[k(a− b)]G−

It is evident that when the interferometer is tuned at a dark fringe for the
carrier, the sidebands are transmitted, and conversely. The SNR takes the
form :

SNR(νg) ∝ (1− ps) sin[k(a− b)]

∣∣∣∣∣G+
F

|F | −G−
F

|F |

∣∣∣∣∣ (1.18)

If we assume the carrier at a dark fringe, we get

TMic = (1−ps)eik(a+b)



0 0 0
−iG+ 0 0
−iG− 0 0


 , RMic = (1−ps)eik(a+b)



iF 0 0
0 iF+ 0
0 0 iF−




This allows to study the SNR of a simple Michelson having FP cavities as
arms. We have in the coupling rate formalism, neglecting ps at this level :

SNR(fg) ∝ 4FL
λ

2− σ√
1 + 4∆f 2

1

2

∣∣∣∣∣∣
eiΨ+

√
1 + 4(∆f + fg)2

+
e−iΨ−

√
1 + 4(∆f − fg)2

∣∣∣∣∣∣

where

Ψ+ = tan−1 (2(∆f + fg))− tan−1

(
2∆f

1− σ

)

Ψ− = tan−1 (2(∆f − fg))− tan−1

(
2∆f

1− σ

)

After some algebra, we find the following result :

SNR(fg) ∝ 8(1− σ/2)FL
λ

×

 (1− σ + 4∆f)2 + 4(1− σ)2f 2

g

(1 + 4∆f)2 ((1− σ)2 + 4∆f)2)
(
1 + 8(∆f 2 + f 2

g ) + 16(∆f 2 − f 2
g )

2
)



1/2

(1.19)
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Figure 1.15: Simple Michelson with FP cavities : Spectral density of h equiv-
alent to shot noise

if the cavities are at resonance (∆f = 0), we have simply

SNR(fg) =
8FL
λ

1− σ/2√
1 + 4f 2

g

√
PL

2hPν
h(fg)

q we plot hereafter the spectral density of equivalent h for various values of F
for a 20W light source at λ = 1.064µm. (see Fig.1.15). The sensitivity at low
frequency is a function of F . The optimum value of F occurs theoretically
for σ = 1, i.e. for the optimal coupling of the cavities. This corresponds to
F = π/p. For p = 3 10−5, this corresponds to a finesse of 105. On the other
hand, when σ = 1, the surtension coefficient is S = 1/p, and this means
here a surtension of ≃ 3 104. For a 10 W laser source, this is is 0.3 MW
stored light power. Let us keep however in mind that the improvement due
to increasing the finesse occurs only at low frequency. But at low frequency,
the limitation of the sensitivity is due to thermal noise, and it is worthless
to try higher finesses as long as a means of reducing thermal noise has’nt
been found . Better idea is to increase the laser power, because the whole
curve is then globally lowered. But 20W (as assumed in Fig.1.15) is the
maximum presently reasonable for a CW monomode, stabilized laser. For
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gaining 1 order of magnitude, we would have to lock in phase an array of
3 such lasers. This is quite feasible, but the result can be achieved with a
much more elegant and convenient solution, as explained hereafter. Let us
remark that for given νg, the SNR is of the form

SNR =
8πL

λ

1

p

σ(1− σ/2)√
1 + q2σ2

√
PL

2hPν
h(νg)

with q ≡ 2πνg/p∆νFSR and consequently is a maximum for a finite value of σ.
The parameter q is very high even for νg = 10Hz, and a good approximation
of the optimal coupling rate is :

σopt =

(
2

q2

)1/3

=

(
p∆νFSR√
2 πνg

)2/3

The optimal finesse is therefore :

Fopt(νg) =

(
π

p

)1/3 (
∆νFSR
νg

)2/3

For instance, with p = 3 10−5, ∆νFSR = 50 kHz, this gives

Fopt(νg) = 13782×
(
10Hz

νg

)2/3

But the maximum is very flat, and it is not necessary to require the true
optimum. A value of σ such that qσ = 2 is quite sufficient, the SNR differing
from its true optimum by only 10%. this corresponds to

Fopt(νg) =
∆νFSR
νg

The pseudo-optimal finesse for νg = 1 kHz is for instance F = 50. The
pseudo-optimal finesse depends of a reference frequency ν(0)g which is an
equivalent parameter, the length of the cavities being fixed. In terms of
this reference frequency, we have :

SNR(νg) =
4 νopt

ν
(0)
g√

1 +
(
2 νg

ν
(0)
g

)2

√
PL

2hPν
h(νg)
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Figure 1.16: Michelson with detuned cavities (F=100)

where νopt is the optical frequency. This formula is valid except for too small
values of ν(0)g . For the interval [10 Hz, 10kHz], it is valid. We see the huge
scale factor provided by the cavities. When the two cavities have a common
detuning, the SNR is reduced, as can be red directy on Eq.(1.19). But
a resonance occurs when the upper sideband created by the GW becomes
resonant (for fg = ∆f). At this frequency, the loss due to the frequency
offset of the carrier is somewhat compensated by the resonance (see Fig1.6)
One important point is that, working out of resonance, the reflectances of the
cavities are much higher than in the tuned case. This regime of operation, of
no benefit in the simple Michelson configuration, becomes interesting when
recycling is applied, as will be shown later.

1.7 Recycling

1.7.1 standard power recycling

It is clear from conservation laws in general, and namely from the previous
section that when tuned at a dark fringe, the transmittance of the Michelson
being a minimum, its reflectance is a maximum. It has been proposed a long
time ago by R. Drever to build a cavity with one extra mirror (the recycling
mirror) and the Michelson as a second mirror (see Fig.1.17 for notation).
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Figure 1.17: Recycled Michelson with FP cavities

By controlling the resonance of this recycling cavity , the surtension coef-
ficient enhances the power reaching the splitter, and the SNR is increased.
The A133 operator corresponding to this configuration is easily obtained by
copying the simple Fabry-Perot operators. The Michelson operators for re-
flection and transmission being respectively RMic and TMic, and l the length
of the recycling cavity, we have for the reflectance and transmittance of the
complete interferometer :

RItf =
[
rr + (1− pr)e

2iklRMic

] [
1 + e2iklrrRMic

]−1
(1.20)

TItf = eikltrTMic

[
1 + e2iklrrRMic

]−1
(1.21)

We are especially interested in the TItf 10,20 components, giving the SNR. Us-
ing the preceding results about the Michelson operators, after some algebra,
we obtain (δ ≡ k(a− b)) :

TItf 10,20 = −i
tr(1− ps)e

ik(l+a+b)G±
[
sin δ + i rr(1− ps)e

ik(2l+a+b) F±
]

DD±

TItf 00 = − tr(1− ps)e
ik(l+a+b) cos δ F

D
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with the following definition (a = −1, 0, 1) :

Da = 1 + i rr(1− ps)e
ik(2l+a+b) sin δ Fa

It is always possible to tune the path difference between the two arms at a
dark fringe (δ ≡ π/2[mod2π]), and the length l of the recycling cavity in
order to obtain resonance, i.e. :

D = 1− rr(1− ps) |F |

where F refers to the (assumed common) reflectance of the cavities. At
this point, the SNR is simply the SNR of a Michelson, multiplied by the
surtension factor :

SNR(fg) = SNRMic(fg)×
tr

1− rr(1− ps) |F |
(1.22)

In the so called standard recycling sheme, we assume the FP cavities at
resonance (∆f = 0). The SNR takes on the simple form

SNR =
4FL
λ
(2− σ)

√
1 + 4f 2

g

tr(1− ps)

1− rr(1− ps)|1− σ|

√
PL

2hPν
h(νg)

Where we see directly how increasing the coupling factor increases the Michel-
son SNR, but decreases the recycling factor. Anyway, we are free to choose
the best recycling reflectance rr, i.e. that maximizing the recycling surtension
factor. This happens when

rr opt = (1− pr)(1− ps)|1− σ|

giving

Sr opt = (1− ps)

√
1− pr

1− (1− pr)(1− ps)2(1− σ)2
4FL
λ
(2− σ)

√
1 + 4f 2

g

√
PL

2hPν
h(νg)

The mirror losses will be taken very small (of the order of 10 ppm), and we
have seen that the coupling rate in a simple Michelson must be relatively
small. It will be even smaller here, because the recycling factor would be
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destroyed by a large cavity absorption. It is therefore not unrealistic to con-
sider that the total losses are dominated by the cavity resonant absorption,
and however, small (pr + 2ps ≪ 2σ ≪ 1). The optimal SNR is then

SNR(νg) =
4πL√
2λ

1

p

σ1/2(2− σ)√
1 +

(
2π νg

p∆νFSR
σ
)2

√
PL

2hPν
h(νg)

When searching for the optimal value of σ, we get the following equation,
with q = 2πνg/p∆νFSR :

1

2
q2σ3 + q2σ2 +

3

2
σ2 − 1 = 0

for avoiding an exact but useless and cumbersome resolution of this equation,
we rather solve it in q:

q2 =
1− 3σ2/2

σ2(1 + σ/2)

Now we remark that, even for low GW frequencies (10 Hz), q2 is very large:
Consequently, σ must be very small, and we can take the approximation

σopt =
1

q

or, in terms of finesse,

Fopt =
∆νFSR

2ν
(0)
g

Where ν(0)g is the GW frequency for which the SNR is optimized. But here,
the maximum is sharp (see Fig.1.18). Remark that this value is half the
pseudo-optimum for the simple Michelson. This sharp maximum makes the
SNR very sensitive to the GW frequency at which the SNR is optimized.
With physically significant parameters (frequencies in the detection range
[10 Hz,10 kHz], and small losses), the SNR can be approximated by a simple
formula. Call pITF the losses encountered in the recycling mirror and the
splitter, i.e. the losses external to FP’s : we have

1− pITF = (1− pr)(1− ps)
2 ⇒ pITF ≃ pr + 2ps



1.7. RECYCLING 59

 0.00  0.05  0.10
 0.0

 0.1

 0.2

ν
g
 = 10 Hz

ν
g
 = 20 Hz

ν
g
 = 50 Hz

coupling factor σ

SN
R

 f
or

 o
pt

im
al

 r
ec

yc
lin

g

Figure 1.18: SNR vs σ for three GW frequencies. The small diamonds show
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Figure 1.19: SNR vs frequency for four finesses. The small stars point the
GW frequency at which the SNR was optimized.
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The losses internal to FP’s are still p = 1−(1−p1)r22. Neglecting non essential
small terms leads to :

SNR(νg) =
1√

pITF + p∆νFSR

πν
(0)
g

2νopt
ν
(0)
g√

1 +
(

νg

ν
(0)
g

)2

√
PL

2hPν
h(νg) (1.23)

the parameter p∆νFSR/2π has the dimension of a frequency, and is of order
1 Hz. The first term represents the gain due to optimal recycling, the second
is the SNR of a simple Michelson. We can conclude that a power recycled
Michelson, having an optimal recycling rate, and an optimal finesse for a
given GW frequency is not significantly better that a simple Michelson when
that frequency is very low. In this subsection and in the next one, we see
how the reflectivity of the Fabry-Perot cavities play a central role. The
efficiency of recycling crucially depends on the quality of the reflectivity.
This is the reason why at low frequency, a high finesse being needed, the
coupling rate increases, the reflectivity decreases, and the effect of recycling
becomes negligible. This strong requirement of very reflecting cavities was
the cause of a number of numerical optics studies that in turn, motivated
section 3.

The amplitude in the recycling cavity has a peak at the recycling reso-
nance. It is interesting to evaluate the width of the resonance line when the
frequency of the source varies. The surtension factor reads :

Sr =

∣∣∣∣∣
tr

1 + irr(1− ps) eik(2l+a+b) sin δF

∣∣∣∣∣

2

in this expression, the dominating phase is obviously given by the reflectance
F . Since the phase reflected by cavities has already a sharp slope, we can
expect this slope to be reinforced by the recycling finesse. We can take for
the modulus of the reflectance its value |F | = 1 − σ at resonance, assume
δ = π/2 and π/2+k(2l+a+ b) ≡ π. The only frequency dependent quantity
(in this approximation) is the phase Φ of the reflectance, given by

Φ ∼ 2 tan−1(2∆f)

where we have assumed a small σ. If the frequency excursion is small com-
pared to the cavity linewidth, then ∆f is small, so that we can write :

Sr = S(0)
r

∣∣∣∣∣
1

1 + (4FR∆f/π)2

∣∣∣∣∣

2
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Figure 1.20: Variable finesse by detuning the dark fringe

where S(0)
r is the peak height for a given detuning of the dark fringe δ, ∆f

the reduced frequency excursion, and

FR =
π
√
rr(1− ps)(1− σ) sin δ

1− rr(1− ps)(1− σ) sin δ

the recycling finesse. This finesse depends obviously of the tuning of the
Michelson. Detuning reduces the reflectance of the Michelson, as can be seen
on Fig.1.20.

The full width at half maximum of the surtension peak can be therefore
estimated by

δνrec =
π

2FR
δνFWHM

(recall that δνFWHM i the linewidth of the cavity). For standard values,
say ps = 2 10−5, S(0)

r = 50, (hence rr = 0.962, σ = 6.366 10−4,
(corresponding to a cavity finesse of 50 ), we find FR ∼ 78. For a 3 km long,
50 finesse cavity, the linewidth is 1 kHz, so that

δνrec ∼ 20Hz

very near the exact value, numerically obtained, of 19.64 Hz (on Fig. 1.21,
we show the exact line shape for such parameters). It is also clear that



62 CHAPTER 1. THEORY OF GW INTERFEROMETERS

-0.05 -0.04 -0.03 -0.02 -0.01  0.00  0.01  0.02  0.03  0.04  0.05
 0

 10

 20

 30

 40

 50

{@sd=p/2}δ=π/2

{@sd=}δ=1.8

detuning of the laser frequency / linewidth

Su
rt

en
si

on
 f

ac
to

r

Figure 1.21: Linewidth of the recycling cavity / linewidth of the long cavities.
A detuning wrt darkfringe increases the recycling width

a detuning with respect to the dark fringe (δ 6= π/2) not only decreases
the maximum recycling gain, but also increases the recycling linewidth. On
Fig.1.22 the full width at half maximum of the recycling width is plotted.
This helps tuning the interferometer.

1.7.2 detuned power recycling

We consider the case of a power recycled Michelson with detuned cavities.
The basic idea is to exploit at the same time the resonance (frequency ν0)
of a cavity for one sideband (such that νL ± νg = ν0) and the fact that the
carrier being out of resonance, the reflectivity of the cavities is enhanced,
and consequently the recycling efficiency also. We restrict our attention
to two special cases giving the same result for the SNR : The symmetrical
detuning, in which the two cavities have the same detuning ∆f , and the
antisymmetrical detuning, in which one cavity is detuned by ∆f , and the
other one by −∆f . In the first case, the upper sideband is resonant in the two
arms, and never the lower sideband, in the second case, the upper sideband
is resonant in the first arm, and the lower sideband in the second arm, so
that finally, the effect is identical. We develop the symmetrical case. Owing
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Figure 1.22: Linewidth of the recycling cavity vs dark fringe detuning δ ≡
2π(a− b)/λ

to the general Eq.1.19, the SNR for a detuned, power recycled Michelson is :

SNR(fg) =
8FL(1− σ/2)

λ

tr
1− rr(1− ps)ρ

√
S

√
PL

2hPν
h(νg)

where ρ(∆f) is the FP’s modulus reflectance, and

S =
(1− σ + 4∆f 2)2 + 4(1− σ)2f 2

g

(1 + 4∆f 2)((1− σ)2 + 4∆f 2)(1 + 8(∆f 2 + f 2
g ) + 16(∆f 2 + f 2

g )
2)

recall that

ρ(∆f) =

√

1− σ(2− σ)

1 + 4∆f 2

The optimal recycling is obtained when

rr = (1− pr)(1− ps)
2ρ2

The efficiency of recycling essentially depends on the reflectivity of the cavi-
ties. When the detuning is not zero, it simultaneously happens, for fg = ∆f
that one of the sidebands is resonant, and the reflectivity of the cavities,
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Figure 1.23: Detuned recycled Michelson (F=100)

higher than when the carrier is resonant. This is the reason why it is possi-
ble to have a better SNR for fg in the neighborhood of ∆f . (see Fig.1.23).

The maximum SNR is

SNRmax =
8FL(1− σ/2)

λ

1√
1− (1− pr)(1− ps)ρ2

×

×
√√√√ (1− σ)2 + 4(1− σ)(3− σ)∆f 2 + 16∆f 4

(1 + 4∆f 2)((1− σ)2 + 4∆f 2)(1 + 16∆f 2)

√
PL

2hPν
h(νg)

1.7.3 Synchronous Recycling

The title of the present section could have been “how to make a narrow band
optical detector by 6 orders of magnitude better than bar detectors”. The
basic idea of synchronous recycling is to have two identical cavities, and a
coupling. In such a system a system of supermodes exists, corresponding
to combinations of the individual eigenmodes of one cavity. For instance,
to a given TEM00 mode of frequency ν0, corresponds two supermodes, a
symmetrical (S) and an antisymmetrical (A). The eigenfrequencies νS, νA
differ from ν0 by an amount depending of the coupling. When the coupling
tends to zero, the frequencies νS, νA tend to the same limit ν0, and to
degeneracy. If the coupling is very weak, the difference νS − νA may fall in
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Figure 1.24: System of coupled cavities

the audio range, and a gravitational perturbation is able to pump energy
from one mode in the other. The principle of operation is thus to tune the
coupling at a minimum, the light source on the A mode, and waiting the
signal on the S frequency (or vice-versa). Another way of understanding
what happens in coupled cavities is to consider the beat note between these
A and S modes. The result is that the stored energy is periodically exchanged
between the two cavities, at a frequency which is the gap νS − νA (Think
to coupled pendulums). We feel that if the GW frequency is exactly this
beat note, the light will accumulate positive phase shifts during the first half
GW period, then will be transferred to the second cavity at the moment
when the phase becomes negative in the first, and positive in the second, so
that, roughly speaking, it sees always a long arm, (or a short one) and we
can expect the phase modulation to increase indefinitely. It has been first
proposed by Ph. Bernard and E. Picasso [4] to use this effect in high Q
superconducting microwave cavities.

It is worth studying the effect on a simplified model involving only two
coupled optical cavities (see Fig.1.24). The two cavities (of length L) are
facing each other. The light can be transmitted through the central region
of length l. In fact, this region is itself a cavity and we call it the central
cavity. Without changing the two FP’s, it is possible to tune the central
cavity by changing the distance l. When the central cavity is at resonance,
its tranmittance is a maximum, and the coupling is strong. When the central
cavity is at antiresonance, its transmittance is a minimum, and the coupling
is weak. We assume in the following simple model no losses, a reflectivity of
1 for the two end mirrors, and of r for the two inner mirrors. Let us consider
the resonance condition for a wave to remain stored in the system. If we call
F the reflectances of the (identical) cavities, we have for a round trip in the
central cavity :

(iF eikl)2 = 1
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Two series of solutions can be obtained by taking

iF eikl = 1 symmetrical mode

iF eikl = −1 antisymmetrical mode

in case of zero losses, the reflectance of one cavity is of modulus 1 :

F =
r + e2ikL

1 + r e2ikL
= e2ikL

1 + r e−2ikL

1 + r e2ikL

If we take the resonance as a reference frequency, we can write

2kL =
4πν0L

c
+

4πLδν

c

where ν0 is the resonance frequency of the (isolated) cavity, and δν the un-
known detuning giving a resonance in the coupled system. We have thus
4πν0/λ ≡ π [mod2π], and we can work with the reduced detuning already
used above, ∆f = δν/δνFWHM which is simply the ratio of the detuning to
the linewidth of the cavity. The round trip phase becomes simply

2kL = π +
2π

F ∆f

so that the reflectance reduces to the pure phase factor

Arg(F ) = π +
2π

F ∆f + 2 tan−1

[
r cos(2π∆f/F)

1− r sin(2π∆f/F)

]

For the phase factor corresponding to the central cavity, we have

kl =
2πν0l

c
+

πl

F L
∆f

The constant phase ϕ = 2πν0l/c can be considered as the tuning of the
central cavity. The resonance conditions become

2 tan−1

[
r cos(2π∆f/F)

1− r sin(2π∆f/F)

]
= (2n+ 1)π − π

2
− ϕ− 2π

F ∆f − πl

F L
∆f

leading to the S-modes equation :

r cos(2π∆f/F)

1− r sin(2π∆f/F)
= tan

[
ϕ

2
+
π

4
+

(
1 +

l

2L

)
∆f

]−1

(1.24)
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Figure 1.25: Relative detuning of the A and S supermodes vs tuning of the
central cavity

The A-modes equation can be obtained a similar way :

r cos(2π∆f/F)

1− r sin(2π∆f/F)
= − tan

[
ϕ

2
+
π

4
+

(
1 +

l

2L

)
∆f

]
(1.25)

These are implicit equations in the unknown detuning ∆f . The numerical
solutions are plotted on Fig.1.25. The round trip phase in the central cavity
is equal to 2ϕ. The value ϕ = 0 corresponds thus to antiresonance, then
to a minimum of coupling, and a weak splitting of the resonance lines. The
tuning has period π, so that we retrieve a similar situation at ϕ = π where
the S-frequency is near the preceding A-frequency. The value ϕ = π/2 cor-
responds to resonance of the central cavity, thus to a maximum of coupling,
and a maximum of line splitting This maximum is half the FSR (the interval
between the two white spots on the figure). In order to study the minimum of
coupling, and the frequency gap between the A and S modes at this tuning,
we turn to our simplified model, which will be of some use anyway in the
sequel. For zero losses, the parameter σ is zero, and we have for the phases :

π

2
+ 2 tan−1(2∆f) +

2πl

c
(ν0 + δν) ≡ 0 (S−modes)
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π

2
+ 2 tan−1(2∆f) +

2πl

c
(ν0 + δν) ≡ π (A−modes)

We can write as well

∆fS =
1

2
tan

[
ϕ

2
+
π

4
+

πl

2FL∆fS
]−1

The term πl/2FL is very small for kilometric cavities of finesse ≃ 100 and a
metric central cavity. If we neglect it, we have the very simple results :

∆fS =
1

2
tan

[
ϕ

2
+
π

4

]−1

∆fA = −1

2
tan

[
ϕ

2
+
π

4

]

The following plot (Fig.1.26) is to be compared with the preceding. The
approximation used is valid only for detunings much smaller than the FSR.
For ϕ = π/2, we have seen that the detuning of the A-mode is half the FSR,
the model consequently fails, this is the reason of the divergence of the A-
mode at this point. The same reason causes the divergence of the S-mode
at −π/2. If we restrict our attention to the neighbourhood of ϕ = 0, i.e.
the validity range of the present model, we can see a good agreement with
the exact calculation. It is in particular easy to compute the minimum line
splitting :

[∆fS −∆fA]min =
1

2

[
1

tan(π/4)
+ tan(π/4)

]
= 1

corresponding, in terms of frequency, to

[δνS − δνA]min = δνFWHM =
c

2FL
In other words, the minimum splitting is nothing but the linewidth of the
cavity. If we intend to use this device to detect GW by coupling the A and S
modes with the gravitational perturbation, we see that we have to use high
finesse and long cavities. For the current situation (L=3 km and F=100),
the frequency gap is νg=500 Hz. Higher values can be obtained by a different
tuning of the central cavity : The general result is

νg = δνS − δνA =
1

cosϕ

c

2FL
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Figure 1.26: Approximate model of degeneracy removing by coupling

We have now to study the response of a real system involving a light
source and a detector. The scheme of Fig.1.27 was suggested years ago
by R. Drever [3] after a very different approach than Ph. Bernard & E.
Picasso. The coupled cavities are in what we call ring cavity on the figure.
The optical path has been split for clarity, and it could seem strange to
separate between the incident and the reflected wave off a cavity. It is however
possible by using polarization rotators and polarization sensitive reflectors,
so that the situation is almost that of the figure. If (as likely) these switching
elements induce losses, these losses can be localized in the mirror rt. The
splitter and the square path allow to launch two rotating waves in the ring
cavity, one clockwise and one counterclockwise, these waves are recombined
on the splitter. We first consider the counterclockwise wave (see Fig.1.28)
and evaluate the A133 reflection operator. We have firstly for the intracavity
wave :

B = trAin + rrrte
2iklF2F1B

or :

B = tr
[
1− rrrte

2iklF2F1

]−1

then

Aout = i rr Ain − i trrte
2iklF2F1B
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so that the reflectance is :

R+ = rr − t2rrte
2iklF2F1

[
1− rrrte

2iklF2F1

]−1

=
[
rr − (1− pr)rte

2iklF2F1

] [
1− rrrte

2iklF2F1

]−1

Obviously, for the clockwise optical path, we have the reflectance :

R− =
[
rr − (1− pr)rte

2iklF1F2

] [
1− rrrte

2iklF1F2

]−1

Now, if we return to the splitter, we can compute the transmittance of the
whole system :

T = −i t2sr2f eiφR− + ir2sr
2
f e

iφR+

Where the two transfer mirrors of the square cavity have been assumed iden-
tical. φ is the optical path inside the square cavity. If further we assume a
perfectly symmetrical splitter, we can write

T = −i 1
2
(1− ps)r

2
fe
iφ (R− −R+)

A direct calculation gives

[R− − R+]10 = −t2rrt e2ikl
2G+(F−F+)

DD+

Where the definitions of G±, F± are the same as in section 7 , and

Da = 1− rrrt e
2iklF 2

a (a = −1, 0, 1)

The [10] component of T is thus :

T10 =
FL
λ

4i(2− σ)2(1− ps)r
2
frte

iφt2rfg

(1− 2i∆f)2[1− 2i(∆f + fg)]2 [1− rrrte2iklF 2] [1− rrrte2iklF 2
+]

One would obtain a similar expression for T20 by changing the sign of fg. The
preceding expression exhibits a sharp resonance peak when the resonance
condition

2kl + 2Arg(F ) ≡ 0 [mod2π]

is met. The difference of π with respect to the preceding subsection (two
isolated cavities) is due to the fact that we have now two extra mirrors, for
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recycling (Mr) and transfer (Mt) each adding a phase of π/2. This should
be kept in mind in any comparison. In particular, the resonance condition
for the central cavity is now 2kl ≡ 0, and the antiresonance is 2kl ≡ π. We
assume the laser frequency given, so that kl is a constant, representing the
tuning of the central cavity. The long cavities are detuned by a microscopic
change in length making their new resonance shifted by an amount ∆f . For
∆f corresponding to a resonance of the ring cavity, we have thus to solve

tan−1

(
2∆f

1− σ

)
+ tan−1(2∆f) = −kl

or,
2(2− σ)∆f

1− σ − 4∆f 2
= − tan(kl)

this gives two solutions :

∆fS =
1

2



1− σ/2

tan(kl)
+

√√√√
(
1− σ/2

tan(kl)

)2

+ 1− σ




and

∆fA =
1

2



1− σ/2

tan(kl)
−
√√√√
(
1− σ/2

tan(kl)

)2

+ 1− σ




Note that

∆fA ×∆fS = −1 − σ

4
(1.26)

and

∆fS −∆fA =

√√√√
(
1− σ/2

tan(kl)

)2

+ 1− σ (1.27)

We remark that the minimum frequency gap, is

[∆fS −∆fA]min =
√
1− σ

For having a large SNR at the normalized GW frequency f (0)
g >

√
1− σ,

we follow the following scheme :

• Tune the central cavity in such a way that ∆fS − ∆fA = f (0)
g , which

happens for

kl = tan−1


 1− σ/2√

f
(0)2
g − (1− σ)
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Figure 1.29: Gravito-optical pumping

• ∆fA and ∆fS are now determined. Tune the cavities in such a way
that ∆f = ∆fA.

Obviously, a similar process can be carried out starting from the upper fre-
quency ∆fS and going to the lower level ∆fA : this is described by the T20
component of the A133 transmittance (see Fig.1.29). Unfortunately, only
one of the two components T10 and T20 can be made resonant. If we work on
T10, we can therefore neglect T20, and vice-versa. At the end of this process,
we see that the resonance condition is met simultaneously, for

1− rrrte
2iklF 2 = 1− rrrtρ

2
A

because the tuning satisfies the modes A equation, and for

1− rrrte
2iklF 2

+ = 1− rrrtρ
2
S

because the tuning satisfies the modes S equation when fg = f (0)
g . ρA and

ρS are the modulus reflectances :

ρ2A,S = 1− σ(2− σ)

1 + 4∆f 2
A,S

We have then, at resonance, when fg = f (0)
g ,

|T10| =
FL
λ

16(1− σ/2)2t2rf
(0)
g

(1 + 4∆f 2
A)(1 + 4∆f 2

S)(1− rrrtρ2A)(1− rrrtρ2S)

We can still fix the recycling rate by opimizing T10 with respect to rr. In the
general case, when the gravitational frequency is larger than the minimum
gap, it is cumbersome to derive the optimal rr. We have :

[rr]opt =
1 + (1− pr)r

2
t ρ

2
Aρ

2
S

rt(ρ2A + ρ2S)
−
√√√√
(
1 + (1− pr)r2t ρ

2
Aρ

2
S

rt(ρ2A + ρ2S)

)2

− (1− pr)
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If we use the definitions of ρA and ρS, it is possible to show that

ρA × ρS = 1− σ

which is particularly remarkable, being independent on the tuning of the
cental cavity. After that, the sum ρ2A + ρ2S will obviously depend on the
tuning :

ρ2A + ρ2S = 1 + (1− σ)2 − σ2(2− σ)2

σ2 + 4f
(0)2
g

It is however reasonable to optimize the SNR for the lowest possible GW
frequency, i.e when f (0)

g = fm =
√
1− σ, situation in which we have ρA =

ρS =
√
1− σ. The optimum value of the recycling mirror reflection coefficient

is simply
[rr]opt = (1− pr)rt(1− σ)

And the optimal peak value of |T10| is

|T10|peak =
2πL

λp
K(σ)

with the form factor

K(σ) =
2σ

√
1− σ

1− (1− pRC)(1− σ)2

and 1 − pRC = (1 − pr)r
2
t . The form factor K has the maximum value 1,

obtained for the approximate value σ = (2pRC)
1/3. But the shape of the

curve is so flat, that this value is misleading, a value of K very close to 1 is
obtained already for the pseudo- optinum σ ≃ 20psr (see fig.1.30). The peak
SNR at resonance is therefore

SNRpeak,Max =
2πL

λp

√
PL

2hPν
h(νg)

for a wide range of reference GW frequencies. For f (0) too small, however,
the SNR falls to zero. Remark that this peak value scales as 1/p, whereas
the zero frequency limit of the (wideband) power recycling scales as 1/

√
p.

The spectral density of h equivalent to shot noise is :

h(f0) =

√
2hPν

PL

1

SNRpeak,Max
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Figure 1.30: Form factor K for the SNR vs finesse σ = pF/π. The white
dots are the strict optima, the black dots mark the pseudo-optima

For cavity losses p = 3 10−5, l=3 km, λ = 1.064 10−6 m, PL=20W, we have

h(f0) ≃ 2.3 10−25Hz−1/2

It is now necessary to study the width of the resonance. For this purpose,
we assume the laser being locked on the antisymmetric resonance, and the
gravitational frequency in the neighbourhood of the gap f (0)

g , i.e. fg = f (0)
g +

δf , so that ∆fA + fg = ∆fS + δf . Consider the SNR :

SNR(δf) ∝ 16FL
λ

(1− σ/2)2t2rfg
(1 + 4∆f 2

A)(1 + 4(∆fA + fg)2)(1− rrrtρ2A) (1− rrrtρ2+e2iΦ)

In this expression, the varying terms are :

• The fast varying phase

Φ = tan−1

[
2(∆fS + δf)

1− σ

]
+tan−1 [2(∆fS + δf)]−tan−1

[
2∆fS
1− σ

]
−tan−1 [2∆fS]

expanded at first order in δf this gives

Φ = Aδf with A =
4(2− σ)(1− σ + 4∆f 2

S)

[(1− σ)2 + 4∆f 2
S] [1 + 4∆f 2

S]
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• The reflectivity of the cavities for the upper sideband :

ρ2+ = 1− σ(2− σ)

1 + 4(∆fS + δf)2

This differs from unity by a small amount, whose variation is like second
order. More specifically, the second order expansion gives

ρ2+ = ρ2S +
8σ(2− σ)∆fS
(1 + 4∆f 2

S)
δf +

4σ(2− σ)(1− 12∆f 2
S)

(1 + 4∆f 2
S)

3

We have already seen that the best value of σ is very small, in order to
have a good reflectivity of the cavities. It can be thus understood, and
numerically checked that the variations of ρ2+ around the S resonance
can be neglected.

• The term,
f (0)
g + δf

1 + 4(∆fS + δf)2

which varies very little.

The study of the shape of the resonance line can thus be carried out on the
only term :

|1− rrrtρ
2
+e

2iΦ| ≃
[
(1− rrrtρ

2
S)

2 + 4rrrt sin
2(Aδf)

]1/2

= (1− rrrtρ
2
S)


1 +


2

√
rrrtρ2S sin(Aδf)

1− rrrtρ2S




2


1/2

expression very similar to a cavity resonance, with the superfinesse

SF =
π
√
rrrtρ2S

1− rrrtρ2S

The linewidth (FWHM) od the SNR is thus :

∆fg =

√
3(1− rrrtρ

2
s)

A
√
rrrtρ

2
S
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Figure 1.31: Effect of the detuning of the central cavity on the response of
synchronous recycling interferometer

A simplified model will help to get simple estimates of the peak value and
the linewidth of the SNR. We have seen that small values of σ are pseudo-
optimal. We can then try a first order approximation in σ and a fortiori in
the various losses. The SNR (with optimized recycling rate) becomes :

SNR(fg) =
16FL
λ

(1− σ)fg(pRC + 2σ)

(1 + 4∆f 2
A)(1 + 4∆f 2

S)(1− (1− pRC)(1− σ)ρ2A)|1− (1− pRC)(1− σ)ρ2S e
2iΦ| ×

×
√

PL
2hPν

h(νg)

It is easy to see that the 1st order expressions for the S and A detunings are
respectively :

∆fS =
1− σ/2

2 tan(z/4)

∆fA = − (1− σ/2) tan(z/4)

2
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where z = 2kl is the tuning of the central cavity. we find then

1 + 4∆f 2
S =

1− σ cos2(z/4)

sin2(z/4)

1 + 4∆f 2
A =

1− σ sin2(z/4)

cos2(z/4)

whence

(1 + 4∆f 2
S)(1 + 4∆f 2

A) =
4(1− σ)

sin2(z/2)

and also
ρ2S = 1− 2σ sin2(z/4)

ρ2A = 1− 2σ cos2(z/4)

The gravitational resonance frequency is

f (0)
g = ∆fS −∆fA =

1− σ/2

sin(z/2)

If we can neglect the ring cavity losses pRC (a few 10−5) with respect to σ
(up to 1%), we have simply

1− (1− pRC)(1− σ)ρ2S ≃ σ[1 + 2 sin2(z/4)]

1− (1− pRC)(1− σ)ρ2A ≃ σ[1 + 2 cos2(z/4)]

For the varying phase factor, we have

Φ = 4(1− σ/2) sin2(z/4) δf

The SNR is :

SNR =
8πL

λp

(1− σ/2)f (0)
g sin(z/2)

(1− σ)[1 + 2 cos2(z/4)][1 + 2 sin2(z/4)]

×

1 +

(
8 sin2(z/4)

σ[1 + 2 sin2(z/4)]
δf

)2


−1/2 √

PL
2hPν

h(νg)

and finally :

SNR =
2πL

λ

1

p
(1− σ/2)

4 sin(z/2)

3 + sin2(z/2)
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×

1 +

(
8 sin2(z/4)

σ[1 + 2 sin2(z/4)]
δf

)2


−1/2 √

PL
2hPν

h(νg)

from where we conclude that the overall peak value, corresponding to z = π/2
is

SNRpeak,max =
2πL

λ

1

p
(1.28)

This peak corresponds to the resonance frequency

f (0)
g = 1− σ/2

in other words, the minimum resonance frequency is given by the linewidth
of the cavity, and the minimum gravitational linewidth (FWHM) :

δfFWHM,min = σ
√
3

In terms of gravitational frequencies, we find the relation with the cavity
linewidth :

∆νg,FWHM,min =
√
3 × δνFWHM

Let us summarize the results for small σ and z not far π/2 :

• By varying the tuning of the central cavity, it is possible to adjust the
resonance for a GW frequency equal to or larger than the linewidth of
the cavities. The general formula is :

ν(0)g =
1− σ/2

sin(z/2)
× δνFWHM (1.29)

• The best response of the interferometer is obtained for the lowest GW
frequency, when the central cavity is exactly antiresonant (z = π/2),
the value of the SNR resonance peak is:

SNRpeak = SNRpeak,max × P (z) (1.30)

where the maximum peak value has been expressed above (Eq. 1.28),
and P (z) is a form factor, taking the value 1 for z = π/2 :

P (z) =
4 sin(z/2)

3 + sin2(z/2)
(1.31)
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• When the central cavity is progressively detuned from antiresonance,
the GW resonance frequency increases, the sensitivity decreases, and
the GW linewidth increases. The general formula for the GW linewidth
is :

δνg,FWHM = σ
√
3 × 1 + 2 sin2(z/4)

4 sin2(z/4)
× δνFWHM (1.32)

These approximations remain true as long as σ does’nt exceed a few %.
For very low gravitational frequencies, the linewidth has to be very thin, and
the finesse very high, σ cannot more be kept small and the approximation
fails. In fact we already know from the preceding study that the SNR tends
to zero when the resonance peak tends to zero. The ratio νg/δνg,FWHM gives
an idea of the equivalent Q of the resonator. For the optimal operation point
(z = π/2), we have

Q ≃ 1

σ
√
3

=
π√
3pF

1.7.4 Signal recycling

Signal recycling was proposed some years ago by B. Meers [2]. The idea is
to add one more mirror after the output port of the interferometer in order
to store the sidebands generated by the GW. The dark fringe port plus the
signal recycling mirror form a resonant cavity whose reflectivity can be tuned.
The gravitational frequencies creating a sideband for which the signal cavity
is antiresonant are enhanced. This allows to modify the sensitivity curve and
have a gain factor at a given frequency range of special interest. We have
seen other methods giving a comparable result. Here, one more benefit is to
enhance the constrast of the interferometer by the spatial filtering effect of
the extra Fabry-Perot installed at the output (But this is out of the scope
of the present chapter). The sketch of the setup and the notation are shown
on Fig.1.32. The lengths of the short arms are a and b, the length of the
power recycling cavity is l, and the length of the dual recycling cavity is
z. The parameters of the mirrors are labeled by r,s,d. The A133 operator
corresponding to the whole setup may be constructed by successive shells.
We first consider the Michelson (mic) as a black box having two inputs,
West (as in the preceding sections) and South (because the dual recycling
reinjects from the South). It has therefore an A133 reflectance RW

mic and
a transmittance TWm ic (see Fig.1.33). It has also a reflectance RS

mic and a
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transmittance T Smic for the South input port : The corresponding operators
are easy to compute :

RW
mic = t2se

2ikaF1 − r2se
2ikbF2

TWmic = −rsts
(
e2ikaF1 + e2ikbF2

)

RS
mic = −r2se2ikaF1 + t2se

2ikbF2

T Smic = −rsts
(
e2ikaF1 + e2ikbF2

)

If we assume the splitter to be strictly symmetrical, and the Michelson tuned
at a black fringe, we have simply, after setting m = (a+ b)/2,

RW
mic = −RS

mic =
i

2
(1− ps)e

2ikm(F1 + F2) = Rmic

TWmic = T Smic = − i

2
(1− ps)e

2ikm(F1 − F2) = Tmic

with

F1 =



F 0 0
G+ F+ 0
G− 0 F−


 , F2 =




F 0 0
−G+ F+ 0
−G− 0 F−




F, F± and G± having the definitions set in section 8. Now the power re-
cycled interferometer (pritf) (see Fig.1.35 and Fig.1.36) has a transmittance
Tpritf for a west input, and a reflectance Rpritf for a south input. The
corresponding operators are :

Tpritf = tre
iklTmic

[
1 + rre

2iklRmic

]−1
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Figure 1.35: West input on a power recycled Michelson
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Figure 1.36: South input on a power recycled Michelson
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D

Figure 1.37: West input on a power and dual recycled Michelson

Rpritf = −Rmic + rre
2iklTmic

[
1 + rre

2iklRmic

]−1
Tmic

Finally, the dual recycling setup (see Fig.1.37) has a transmittance for a west
input TD.

TD = tde
ikz
[
1 + rde

2ikzRpritf

]−1
Tpritf

After some elementary algebra, we find :

TD,10 = −i trtd(1− ps)e
ik(l+2m+z)G+

[1− i(1− ps)rde2ik(m+z)F+] [1 + i(1− ps)rre2ik(l+m)F ]
(1.33)

TD,20 = −i trtd(1− ps)e
ik(l+2m+z)G−

[1− i(1− ps)rde2ik(m+z)F−] [1 + i(1− ps)rre2ik(l+m)F ]
(1.34)

It is easy ro recognize in these formulas the SNR for a power recycled Michel-
son, as already derived in a previous section, multiplied by an extra surtension
factor :

SD =
td

1− i(1 − ps)rde2ik(m+z)F+

Remark the opposite signs in the two factors of the denominators : The best
efficiency is obtained for resonance in the recycling cavity, and antiresonance
in the signal cavity. Obviously, the two sidebands cannot be both antireso-
nant (except at zero gravitational frequency). if we choose for instance, to
make the (10)-component resonant. It is possible

• to tune the long Fabry-Perot’s at resonance, so that Arg(F ) = π,
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• to tune the power recycling cavity so as to obtain resonance, by taking

2k(l +m) +
π

2
≡ π

the signal surtension factor may be written as

SD =
td

1− rd(1− ps) ρ+ ei[π/2+2k(m+z)+Arg(F+)]

where, f being the gravitational reduced frequency,

ρ+ =

[
1− σ(2− σ)

1 + 4f 2

]1/2

Arg(F+) = π + tan−1

[
2f

1− σ

]
+ tan−1[2f ]

clearly, it is always possible to tune the dual recycling cavity to meet reso-
nance, with the condition :

2k(m+ z) + tan−1

[
2f

1− σ

]
+ tan−1[2f ] ≡ π

2

The sharpness of the dual resonance is a function of rd (see Fig.1.38) If σ is
small, we conclude that the detuning giving the sensitivity peak at given f0
is

δ ∼ π

2
− 2tan−1(2f0)

where we have set δ ≡ 4π(m+ z)/λ. (see Fig.1.39)

1.7.5 The signal extraction regime

We remark that for δ = −π/2, which corresponds to f0 = ∞, the sensitivity
is almost flat (there is a knee at a higher frequency). This regime, exhibiting a
broadband response (broader than the standard recycling, and thus losing in
maximum sensitivity, for the same finesse) was called ’Signal extraction’ by J.
Mizuno [5], [6]. The explanation is that the flat curve is the result of a conflict
between the low-pass response of the Michelson (1/(1 + 4f 2) and the signal-
recycling gain factor which starting from a low value at f = 0 (the SNR is out
of resonance though the FP’s are resonant), increases sharply to a high and
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Figure 1.38: SNR of dual recycling configuration for various recycling rates
(values of rd)
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constant value when the FP’s arrive to anti-resonance. (recall that there is a
phase flip when a FP transits from resonance to anti, that the antiresonance
frequency range is much larger than the resonance, especially at high finesses,
and that the reflectance modulus is much higher at antiresonance than at
resonance ). This result can be understood by looking at the expression of
the SNR (1.33). Recall that, when the cavities are at resonance, the upper
sideband generated by the GW in one cavity is

G+ = i
2FL(2− σ)

λ

1

1− 2ifg

and the reflectance of the cavity for that upper sideband is

ρ+ = − 1− σ + 2ifg
1− 2ifg

where fg is the normalized gravitational frequency, i.e. the ratio of the grav-
itational frequency to the linewidth of the cavity (fg = νg/δν), and σ the
coupling coefficient. The SNR takes thus the form (up to a phase factor and
neglecting the length of the SR cavity), when power recycling is resonant and
signal recycling antiresonant :

TD,10 =
2FL(2− σ)

λ

1

1− 2ifg
Gr

td

1 + (1− ps)rd
1−σ+2ifg
1−2ifg

where Gr is the resonant power recycling gain (unsensitive to GW frequency)
:

Gr =
tr

1− (1− ps)rr(1− σ)

This yields

|TD,10| =
2FL(2− σ)

λ
Gr

∣∣∣∣∣
td

1− 2ifg + (1− ps)rd [1− σ + 2ifg]

∣∣∣∣∣ =

2FL(2− σ)

λ
Gr

∣∣∣∣∣
td

1 + (1− ps)(1− σ)rd − 2ifg [1− (1− ps)rd]

∣∣∣∣∣

Which makes clear that the bandwidth is now

δνg =
δν

1− (1− ps)rd
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Figure 1.40: SNR in the regime of ”signal extraction”, i.e. δ ≡
−π/2 [mod 2π], for several ratios z/L of the signal cavity. L is the length
of the arms

so that, even if the finesse is very high, by increasing the recycling rate rd,
it is possible to keep constant the product F [1 − (1 − ps)rd] and thus the
bandwidth of the detector.

It is even possible to play with the length of the signal cavity, assuming
lengths much longer than the recycling cavity (see Fig.1.40). This creates
local resonance effects.

It is interesting to note that it is possible, due to the effect mentionned
above, to have almost exactly the same SNR spectral profile with standard
power recycling, and with power recycling + signal extraction. The following
extreme example will help to understand it.

• Assume a power recycling interferometer having finesse 100 long FP
cavities. The optimum power recycling rate corresponds to a surtension
∼ 800. Starting from a 20 W laser, this gives ∼ 18 kW on the splitter,
and finally about 500 kW in the FP cavities.
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Figure 1.41: Solid curve : Standard power recyling, with F = 100 and optimal
recycling. Short dashed curve : Dual recycling-Signal extraction, F = 1000,
optimal recycling, r2d = 0.69. Long dashed curve : r2d = 0.4. Dotted line : r2d
= 0.9.

• Assume now a dual recycling interferometer in the signal extraction
regime. The finesses of the long FP cavities are 1000, and under optimal
power recycling, the power surtension is only ∼ 80, which is ∼ 1.6 kW
on the splitter. The reflection coefficient of the signal recycling mirror
is r2d = 0.69. The power stored in the FP’s is still about 500 kW.

• we can compare the SNR in the two situations (see Fig.1.41).

• the coincidence is caused by the particular choice of rd. A smaller value
would give a standard power recyling type response peaked at f = 0,
a higher value would give a flat response but with a loss of sensitivity.

We see that the drawbacks caused by high powers (thermal lensing, thermal
distortions, radiation pressure, ...) are identical in the FP cavities in both
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cases, but very different in the power recycling cavity. This is of some im-
portance when power dissipation is taken into account (see further chapters).
The ultimate logics of the signal extraction regime is reached when the cav-
ities are optimally coupled (all the light power is absorbed in the FP’s), the
power recycling rate being zero, and nevertheless, the bandwidth large.
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Chapter 2

Beam optics and
Interferometers

2.1 introduction

In interferometric GW detectors, we need to store light in long cavities in
which light propagates back and forth. We have seen that a good reflectivity
of these cavities is a key condition for efficiency in recycling. This reflectiv-
ity, combined with the ability to achieve a dark fringe have been an actual
worry at the beginning of interferometer projects, and have triggered a lot
of optical simulations of FP cavities and interferometers. It was essential to
have theoretical models for light propagation. The theory used up to now
for this purpose is the Scalar Diffraction Theory (SDT) (this seemed suffi-
cient, owing to the very weak departure of the optical elements from an ideal
shape). The basis of the SDT is the Kirchhoff equation, it seemed therefore
useful to recall it and its derivation, in order to see clearly what means the
paraxial approximation which is in fact more widely used.

2.2 A short theory of diffraction

2.2.1 The Helmholtz equation

A component of the the real Electric field, say E(x, y, z) in a homogeneous di-
electric medium of refractive index n, obeys the wave equation (c = 2.997925×

93
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108km.s−1 being the speed of light in a vacuum)

[
∆− n2

c2
∂2

∂t2

]
E(t, x, y, z) = 0 (2.1)

The light coming from a laser can be viewed, in a naive representation as
a pure monochromatic wave. In fact, real lasers have a finite linewidth,
and a finite coherence range. So far as the dimensions of an optical system
are small compared to the coherence range, the monochromatic approxima-
tion remains valid. The lasers used in gravitational wave interferometers are
highly stabilised in frequency and have huge coherence ranges. Even kilomet-
ric optical systems may be treated assuming purely monochromatic waves.
For a monochromatic wave of frequency ν = ω/2π, we can set

E(x, y, z) =
1

2

(
E(x, y, z) e−iωt + E(x, y, z) eiωt

)
(2.2)

and for the amplitude E of the electric field, we obtain the Helmholtz equa-
tion [

∆ + k2
]
E(x, y, z) = 0 (2.3)

where k ≡ nω/c.

2.2.2 The Kirchhoff integral

This is usually the most delicate part in optics books, and often skipped by
stressed readers. The role and the status of the Kirchhoff theory is therefore
seldom known: Is it “exact” or “approximate”, then with respect to what ?
We try to address these issues and give answers at the end of the present
section. Recall that for two arbitrary fields A and B, we have a relation
between a volume integral and an integral on the surface bounding the same
volume, known as Green’s theorem:

∫

V
(A∆B −B∆A) d~r = −

∮

S

[
A
∂B

∂n
− B

∂A

∂n

]
ds (2.4)

~n represents the inward normal to the surface S surrounding the volume
V (see Fig.2.1). The following notation has been used:

∂

∂n
≡ ~n · ~∇
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Figure 2.1:

Consider now a solution E(x, y, z) = E(~r) of the Helmholtz equation (2.3),
and G(~r) a Green function, i.e. satisfying

[
∆ + k2

]
G(~r) = − δ(~r) (2.5)

We have as well, ∆′ involving 2d order derivatives with respect to the primed
coordinates, [

∆′ + k2
]
G(~r − ~r′) = − δ(~r − ~r′) (2.6)

by multiplying both sides by E(~r′) , we can write

E(~r′)
[
∆′ + k2

]
G(~r − ~r′) = − δ(~r − ~r′) E(~r′)

and obviously, with (2.3):

G(~r − ~r′)
[
∆′ + k2

]
E(~r′) = 0

by subtracting these two equations, we get:

E(~r′) ∆′ G(~r − ~r′) − G(~r − ~r′) ∆′ E(~r′) = − δ(~r − ~r′) E(~r′)
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Consider now a volume V in which Eq.(2.3) holds, bounded by a closed
surface S. By integrating the preceding equation over the volume, we get:

E(~r) = −
∫

V

[
E(~r′) ∆′ G(~r − ~r′) − G(~r − ~r′) ∆′ E(~r′)

]
d~r′

by using Green’s theorem, this becomes:

E(~r) =
∮

S

[
E(~r′) ~n′ · ~∇′G(~r − ~r′)−G(~r − ~r′)~n′ · ~∇′E(~r′)

]
ds′

provided the point ~r is inside the closed surface S. If the point is outside,
the integral vanishes, and this property will be exploited below. Assume now
that the surface S extends to infinity. There are thus two half spaces that we
refer to as the left half space, and the right half space respectively. On the
surface at infinity, it can be shown that the surface integral vanishes, due to
the radiation condition on the field (outgoing waves, no source at infinity).
The result is that at any point ~r in the right half space we have:

E(~r) =
∮

S

[
E(~r′) ~n′ · ~∇′G(~r − ~r′)−G(~r − ~r′)~n′ · ~∇′E(~r′)

]
ds′ (2.7)

whereas for ~r in the left half space, we have:

∮

S

[
E(~r′) ~n′ · ~∇′G(~r − ~r′)−G(~r − ~r′)~n′ · ~∇′E(~r′)

]
ds′ = 0 (2.8)

Now it is well known that a solution of Eq.(2.5) is the simple spherical
wave:

G(~r) =
eikr

4πr
(2.9)

so that by taking

G1(~r − ~r′) =
eikρ

′

4πρ′

with ρ′ = |~r − ~r′|, we have a Green function. Let us define ~r′ =
[x′, y′, z′]. Now, if we consider
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G2(~r − ~r′′) =
eikρ

′′

4πρ′′
(2.10)

with ρ′′ = |~r− ~r′′| and ~r′′ = [x′, y′,−z′], we note that it is the symmetrical
of the preceding with respect to the plane z = 0. If the surface S is this
plane, any point in the right half space, will give a non-zero contribution by
the G1 integral, and a zero contribution by the G2 integral, the equations
(2.7,2.8) being exchanged. We may thus add any multiple ofG2 toG1 without
changing the result:

E(~r) =
∫ ∫

z=0

[
E(~r′) ~n′ · ~∇′G(~r, ~r′)−G(~r, ~r′)~n′ · ~∇′E(~r′)

]
dx′ dy′ (2.11)

where G = G1 + β G2 with β arbitrary. The special choice

G(~r, ~r′) = G1(~r − ~r′) − G2(~r − ~r′′) (2.12)

is especially interesting, because it gives a Green function that is zero on
the surface z = 0, which greatly simplifies the equation. We obtain simply

E(~r) =
∫ ∫

z′=0
E(~r′) ~n′ · ~∇G(~r, ~r′) dx′ dy′ (2.13)

this is the Kirchhoff equation

2.2.3 Application of the Kirchhoff equation

The preceding equation, establishing a relation between the field inside a
volume and the field at the boundary is exact, but taken in the strict sense,
of almost no practical interest: It could seem that in order to compute E, we
first need to know E, because the correct way to impose boundary values is
out of this theory. It can however be widely exploited, by slightly changing its
meaning, in the following situation. Assume that the surface z = 0 contains
a hole, and that a primary electromagnetic wave is coming from the left (see
Fig.2.2). We can assume that at the immediate right of the surface z = 0, the
field is simply the field at the left, transmitted through the hole. This means
that on the right side of the plane, the field is zero outside the hole, and
identical to the field coming from the left, within the hole. We can change
the sense of the Kirchhoff equation (2.13) by introducing two fields, one is
the coming one E1(~r), which is assumed to be given throughout the aperture
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D, and the second one E2(~r), which is to be computed from the preceding
one by using a Kirchhoff-like formula:

E2(~r) =
∫ ∫

D
E1(~r′) ~n′ · ~∇G(~r, ~r′) dx′ dy′ (2.14)

The function K(~r, ~r′) ≡ ~n′ · ~∇G(~r, ~r′) is called the Diffraction Kernel. It
can be explicitly computed:

K(~r, ~r′) = − i

λ

eikρ

ρ

(
1 +

i

kρ

)
z

ρ

where ρ ≡
√
(x− x′)2 + (y − y′)2 + z2.

With this explicit formula, we obtain:

E2(~r) = − i

λ

∫ ∫

D
E1(~r′)

eikρ

ρ

(
1 +

i

kρ

)
z

ρ
dx′ dy′ (2.15)

For a numerical implementation of Eq.(2.15), it is necessary to extract the
rapidly oscillating term in exp(ikρ) by writing, with µ2 ≡ (x−x′)2+(y−y′)2,

ρ = z +
√
µ2 + z2 − z = z +

µ2

√
z2 + µ2 + z

so that

eikρ = eikz × exp

[
ikµ2

z +
√
z2 + µ2

]
(2.16)
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The first exponential, rapidly oscillating represents pure propagation, and
goes out of the integral, whereas the second exponential is slowly oscillating,
which is much more convenient, numerically. As a first example, we compute
the diffraction pattern of a rectangular aperture illuminated by a constant
amplitude. The aperture has its length [-b=-1cm,b=1cm] directed along y,
and its width [-a=-0.5cm,a=0.5cm] along x. The distance of the observation
plane is z=1 km, the wavelength is λ = 1 µm. The computational window
containing the source was [-1 cm, 1 cm] × [-1 cm, 1 cm],and the discretization
grid was 200 × 200 points. The well known far field theory [7] gives a central
spot of rectangular shape, with its longer dimension along x, and its shorter
along y. The dark lines correspond to solutions of

sin

[
kax

z

]
= 0

i.e.

xn =
nλz

2a
= n× 10.6 cm

and

sin

[
kby

z

]
= 0

i.e

ym =
mλz

2b
= m× 5.3 cm

The plot is logarithmic with respect of the light intensity (Fig.2.3)
As a second example we compute using Eq.(2.15) the diffraction pattern

of a circular aperture illuminated by a constant amplitude. The radius of
the aperture is a = 1 cm, the distance of the observator is z = 1 km, the
wavelength is λ = 1 µm. The window containing the source was [-1 cm, 1 cm]
× [-1 cm, 1 cm], and the discretization grid used for numerical integration
was 200 × 200 points. The far field theory foresees a central spot surrounded
by rings, the dark rings correspond to solutions rdark of

J1

(
2πa

λz
r
)

= 0

the first zeros of the Bessel functions J1 are

ζ1 = 3.83171 ⇒ rdark,1 ≈ 6.5 cm
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Figure 2.3: Diffraction pattern of a uniform rectangular aperture a =1 cm,
b=0.5cm, at z=1 km for the Nd:YAG wavelength: Distribution of log(I)
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Figure 2.4: Diffraction pattern of a uniform circular aperture a =1 cm at
z=1 km for the Nd:YAG wavelength: Distribution of log(I), longitudinal cut

ζ2 = 7.01559 ⇒ rdark,2 ≈ 11.9 cm

ζ3 = 10.17347 ⇒ rdark,3 ≈ 17.2 cm

The plot (Fig.2.4) is logarithmic with respect to the light intensity. it
can be seen that the dark rings coming out of the numerical calculation are
in agreement with the far field theory. The near field theory of this case
is analytically difficult. Numerical exploitation of the Kirchhoff formula,
give access to the near field. See for instance a longitudinal (i.e. along
the propagation direction z) cut of the intensity distribution (Fig.2.5). In
this case, the circular aperture had 0.1mm radius. The transmitted field
is computed starting from z = 0.01 mm. The two precedent diffraction
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Figure 2.5: Diffraction pattern of a uniform circular aperture a = 0.1 mm
for the Nd:YAG wavelength: Distribution of log(I)
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patterns are roughly known after their far-field approximation (see below).
But let us consider a rather exotic window shape, as for instance a regular 5
folded star (seee. fig.2.6). Even the far field is rather intricate to estimate.
Use of the Kirchhoff integral gives however the result at any distance: (see
Fig.2.7). We give this example, because it cannot be treated analytically due
to the complexity of the aperture, nor even by the numerical (to be presented
farther) Fourier transforms methods because of its sharp edges, this is a case
where use of the Kirchhoff formula is necessary. Finally let we consider the
gaussian beam (this will be studied later in detail), of amplitude

E(x, y, 0) ∝ exp

[
− x2 + y2

w2
0

]

in the plane z = 0. For w0=2 cm, this is the amplitude of the light taken
at the input mirrors of the Virgo cavities. It seems to diffract without any
lobe, as can be seen on Fig.2.8. In fact, the amplitude extends to infinity,
even if it becomes negligible for radial distances larger than w0, whereas the
computing window is finite. It is necessary to take a window much larger
than the gaussian radius of the beam. Too narrow windows are understood
like a diaphragm, and spurious rings are generated. In the preceding case,
even with a computing window as wide as 30 cm, faint lobes can be observed
on a logarithmic plot (see Fig.2.9).

2.2.4 Consistency of the Kirchhoff equation

It is not obvious by only looking at the Kirchhoff formula (2.15), that the
secondary field E2 will reduce to the input field E1 when z → 0, i.e. that
the diffraction kernel tends to a delta function for z → 0. Because we have
changed the meaning of the surface integral, the question of the agreement
of the approximation done in the preceding subsection with reality could be
raisen: Let us try to discuss this issue. The Kirchhoff equation can be written
under the form:

E2(x, y, z) =
∫ ∞

−∞
dx′

∫ ∞

−∞
dy′

[
∂z′

(
eikρ

′

4πρ′
− eikρ

′′

4πρ′′

)]

z′=0

E1(x
′, y′, 0)

(2.17)
with
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Figure 2.7: diffraction pattern at 1 m from the starred source. The thin
circle indicates the size of the initial starred window.
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Figure 2.8: Diffraction of a gaussian wave from 100 m to 3 km
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Figure 2.9: Diffraction of a gaussian wave from 100 m to 3 km,logarithmic
plot
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ρ′ =
√
(x− x′)2 + (y − y′)2 + (z − z′)2

ρ′′ =
√
(x− x′)2 + (y − y′)2 + (z + z′)2

It is clear that the integral may be viewed as a 2D convolution prod-
uct, and therefore may be transformed into a simple algebraic product by
a 2D Fourier tranform in the variables (x′, y′). Recall that the 2D Fourier
Transform of any function f(x, y) of integrable square modulus is defined by:

f̃(p, q) =
∫

R

dx
∫

R

dy eipxeiqy f(x, y) (2.18)

and the reciprocal transform by

f(x, y) =
1

4π2

∫

R

dp
∫

R

dq e−ipxe−iqy f̃(p, q) (2.19)

A useful result can be found in [9]. The function

g(x, y, z) =
eik

√
x2+y2+z2

2π
√
x2 + y2 + z2

has the following FT:

g̃(p, q, z) = i
eiz

√
k2−p2−q2

√
k2 − p2 − q2

After a Fourier transform, the Kirchhoff equation becomes, using this
result:

Ẽ2(p, q, z) =


∂z′


 i

ei(z−z
′)
√
k2−p2−q2

2
√
k2 − p2 − q2

− i
ei(z+z

′)
√
k2−p2−q2

2
√
k2 − p2 − q2





z′=0

×

× Ẽ1(p, q, 0)

and eventually reduces to

Ẽ2(p, q, z) = eiz
√
k2−p2−q2 × Ẽ1(p, q, 0) (2.20)
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which shows that the propagator, defined as the Fourier Transform of
the diffraction kernel has the very simple form

G̃(p, q, z) = eiz
√
k2−p2−q2 (2.21)

We see that this is perfectly consistent with the Helmholtz equation,
which becomes, after a FT:

(
∂2z + k2 − p2 − q2

)
Ẽ(p, q, z) = 0

Anyway, for z → 0, the propagator reduces to 1, showing that the diffrac-
tion kernel reduces to δ(~r − ~r′), and the diffraction to

Ẽ2(p, q, 0) = Ẽ1(p, q, 0) ⇒ E2(x, y, 0) = E1(x, y, 0)

as could be expected. We can conclude that, despite a serious change of
meaning with respect to the Green theorem, the Kirchhoff formula is strictly
equivalent to the wave equation, at least in the case where initial data are
given on a plane screen. It follows that if convenient, it is possible to split
space into successive slices along the propagation direction, the final data of
slice #n being the initial data for slice #(n+1), provided that reflections at
each cut do not exist or are ignored. This scheme can be used in compound
systems with interfaces, and as will be seen later on, in resonant cavities.
We can add the following remark: If we interpret the 2D Fourier transform
in the transverse plane as a continuous expansion on plane waves of various
directions, by identifying

p = k sin θ cosφ , q = k sin θ sinφ

where (θ, φ) denote that direction, we see that the propagator is nothing but
the phase change along the z axis of this special plane wave:

G̃(p, q, z) = G̃(θ, φ, z) = eikz cos θ

2.2.5 The Fresnel approximation and the paraxial diffrac-
tion equation (PDE)

The Fresnel approximation

As soon as the distance z separating the input aperture from the observation
plane is much larger than the wavelength, the 1/kρ term in Eq.(2.15) becomes
negligible, and we can write:
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E2(~r) = − i

λ

∮

D
E1(~r′)

eikρ

ρ
cos(θ) ds′ (2.22)

where θ is the angle under which the element of aperture centered at
(x′, y′) is seen from the observation point (x, y). Eq.2.22 is often referred to
as the “Huyghens-Fresnel” equation. It can be (and was) derived heuristically
by considering all points of the aperture as elementary sources of spherical
waves: At any point of the right hand side half space, the amplitude is the
sum of all these wavelets, and we can for instance say that the elementary
amplitude created at ~r by the small elementary source

ds(x′, y′) = E1(x
′, y′)dx′ dy′

is:

dE2(x, y) = κ
eikρ

ρ
E1(x

′, y′) dx′ dy′

where κ is some coefficient to be determined. The global diffracted field is
thus

E2(x, y) = κ
∫ ∫

D

eikρ

ρ
E1(x

′, y′) dx′ dy′

For this purpose, we can require that the propagation of an indefinite plane
wave is the same plane wave, up to a phase factor. This means that

eikz = κ
∫ ∫

R2

eikρ

ρ
dx′ dy′

The integral is easy to compute, being the value at p = q = 0 of the Fourier
transform of eikρ/ρ that is known, as said above; we have thus :

eikz = κ


2iπ

eiz
√
k2−p2−q2

√
k2 − p2 − q2



p=q=0

=
2iπeikz

k
κ

It is therefore necessary that κ = −i/λ. This was known long before
Kirchhoff’s theory, which is the mathematical justification to the Huyghens
principle and to the Fresnel formula. If θ in Eq.2.22 is small, we are in the
paraxial regime. If the observation point is near the optical axis, and the
distance z long enough, we can neglect the quantity

√
(x− x′)2 + (y − y′)2
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with respect to z, except in the phase factor. This leads to the paraxial
diffraction integral:

E2(x, y, z) = − i

λz
exp(ikz) × (2.23)

×
∫ ∫

D
E1(x

′, y′, 0) exp

[
ik
(x− x′)2 + (y − y′)2

2z

]
dx′ dy′

All consequences of this formula are said having been obtained within
the Fresnel approximation. Remark that this equation is the convolution
product of the field E(z = 0) with the simplified (paraxial) diffraction kernel

KP(x, y, z) = − i

λz
exp

[
ik
x2 + y2

2z

]

Use of the Fourier transform is especially convenient here, because the
Fourier transform of KP is easy to compute. For a function of the form

G(x, y) = e−Z(x
2+y2)

where Z is any complex number of positive real part, it can be shown
that

G̃(p, q) =
π

Z
e−

p2+q2

4Z (2.24)

in particular the propagator is

K̃P(p, q, z) = exp

[
−iz(p

2 + q2)

2k

]
(2.25)

Obviously, we could have deduced it from the ”exact” propagator

G̃exact(p, q, z) = eiz
√
k2−p2−q2

by assuming that the values of p, q are restricted to small values due to
the behavior of the function to be propagated (”small” means p, q ≪ k).
This is one more version of the paraxial approximation, the diffraction is
”adiabatic” along z (if z is regarded as an evolution parameter), so that
the angles of the rays with respect to the axis are small. p, q,

√
k2 − p2 − q2

may be thought of as the coordinates of the wave vector of an elementary
plane wave. Then , θ being the direction of that elementary wave, we have
θ ≃ sin θ =

√
p2 + q2/

√
k2 − p2 − q2. If θ is small, we can thus write:
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G̃(p, q, z) = eikz × e−i
z(p2+q2)

2k

An alternative way of computing E2 is therefore:

E2(x, y, z) =
˜

K̃P(p, q, z) × Ẽ1(p, q, 0) (2.26)

This is a very convenient way, as will be shown later.

The Paraxial Diffraction Equation

One can derive from the Helmholtz equation an approximate equation called
The paraxial diffraction equation (PDE) which is equivalent to the
paraxial diffraction integral. Consider the Helmholtz equation:

[
∆+ k2

]
E = 0 (2.27)

If the field is expected to propagate mainly in the z direction, with a slow
expansion in the transverse plane, we can use the slowly varying envelope
approximation scheme, i.e.

E(x, y, z) = eikz × E(x, y, z)

in which the envelope E(x, y, z) is assumed to depend slowly on z, the
rapidly oscillating factor having been extracted. More specifically, we intend
to use the approximation

∂E

∂z
≪ k E

for neglecting second order derivatives of E, so that the Helmholtz equa-
tion becomes:

[2ik ∂z + ∆T] E = 0 (2.28)

where

∆T ≡ ∂2x + ∂2y

is the transverse Laplace operator.This is the PDE. It is clearly equivalent
to the Fresnel integral, for by taking the Fourier transform of Eq.(2.28) with
respect to x, y, we obtain:
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[
2ik ∂z − (p2 + q2)

]
Ẽ(p, q, z) = 0

the solution of which is of the form

Ẽ(p, q, z +∆z) = Ẽ(p, q, z)× exp

[
− i

(p2 + q2)∆z

2k

]

in which we recover the propagator (2.25).

2.2.6 The Fraunhofer approximation

The ultimate approximation for a diffracted wave holds when the very far
field is considered. The Fresnel-Huyghens integral can be written as:

E(x, y, z) = − i

λz
exp

[
iπ
x2 + y2

λz

]
×

∫

R2

exp

[
iπ
x′2 + y′2

λz

]
exp

[
−2iπ

xx′

λz

]
exp

[
−2iπ

yy′

λz

]
E(x′, y′, 0) dx′ dy′

If we assume the transverse extension of the initial amplitude bounded by a
radius a, the order of magnitude of the argument of the quadratic term in
the complex exponential is

δ < π
a2

λz
= π × NF

NF is called Fresnel number. If the observation distance is so large that NF

may be neglected, we can write simply

E(x, y, z) = − i

λz
exp

[
iπ
x2 + y2

λz

]
×

∫

R2

exp

[
−2iπ

xx′

λz

]
exp

[
−2iπ

yy′

λz

]
E(x′, y′, 0) dx′ dy′

which is nothing but the Fourier transform of the incoming amplitude:

E(x, y, z) = − i

λz
exp

[
iπ
x2 + y2

λz

]
Ẽ
(
2πx

λz
,
2πy

λz
, 0
)
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This is the Fraunhoffer approximation, and allows to compute quickly the
properties of the diffracted field for z very large. For instance, for a rectan-
gular and uniform aperture [−a, a]× [−b, b], one finds immediately

|E(x, y, z)|2 =
16a2b2

λ2z2

[
sinc

(
2πx

λz

)
sinc

(
2πy

λz

)]2

explaining the pattern of Fig.2.3. For a uniform circular aperture, r < a, we
find

|E(r, z)|2 =
[
a

r
J1

(
2πar

λz

)]2

explaining the pattern of Fig.2.4. Anyway, in the very far field, when r/z is
sufficiently small, we have

I(0) ∼ I0 ×
(
S

λz

)2

S being the area enclosed within the aperture, I(0) the intensity on axis in
the far field, and I0 the initial intensity. If we consider the total power P0

passing through the aperture , we get

I(0) ∼
(

S

λ2z2

)
P0

The total power received by an equal area in the far field is P1 = S I(0), so
that we have the ratio

P1

P0

=
(
S

λz

)2

2.2.7 Representation of optical elements

The action of thin optical elements, like thin lenses or nearly flat mirrors on
the optical amplitudes can be modelled without using a diffraction integral.
Consider for instance the reflection off a curved mirror of curvature radius Rc

and diameter D. Assume the mirror to close the aperture in the plane z = 0
(see Fig.2.10). Strictly speaking, the field arriving on the mirror’s surface
should be computed from the field in the plane by Kirchhoff’s equation. It is
more convenient to discuss in the Fourier space. Calling E1(x, y, 0) the field
in the plane z = 0 , and E2(x, y, z) the field on the mirror’s surface, we have
as seen in (2.20):
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Figure 2.10: reflection off a curved mirror

Ẽ2(p, q, z) = eiz
√
k2−p2−q2 × Ẽ1(p, q, 0)

The argument of the imaginary exponential can be written as:

z
√
k2 − p2 − q2 = kz + z

(√
k2 − p2 − q2 − k

)

or

z
√
k2 − p2 − q2 = kz − z(p2 + q2)

2k

2

1 +
√
1− p2+q2

k2

It is necessary to estimate the different orders of magnitude of these terms.

• The quantity p2+ q2 is determined by the spatial behavior of the input
wave. If the spatial frequencies are of the order of magnitude of w0, for
instance for a TEM mode of Fourier transform

φ̃(p, q) = exp

(
− w2

0(p
2 + q2)

4

)

we have
p2 + q2

k2
∼ 4

k2w2
0

∼
(

λ

πw0

)2

∼ θ2g
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θg being nothing but the divergence angle of the beam. For long base-
line interferometers, this aperture is of the order of tens of microradians,
for Virgo, θg = 1.7 × 10−5Rd. It is clear that we can neglect this
term.

• The argument of the imaginary exponential therefore reduces to

z
√
k2 − p2 − q2 = kz − z(p2 + q2)

2k

but

z(p2 + q2)

2k
∼ zλ

πw2
0

∼ z

zR

where zR is the Rayleigh parameter of the beam (see below), about 1km
for GW interferometers, whereas z is of the order of tens of micrometers.
More precisely, we have for a parabolic mirror zmax = D2/8Rc, on the
other hand, the Rayleigh parameter is related to the curvature radius
(in a flat/parabolic cavity of length L) by

zR =
√
L(Rc − L) =

1

α
× Rc

where

α =
R/L√
R/L− 1

the factor α is of the order of the unity (For Virgo, α ≃ 2.97). We
have thus:

z(p2 + q2)

2k
∼ α

8

(
D

Rc

)2

Taking again Virgo figures (D=35 cm, Rc=3.45 km) this is:

z(p2 + q2)

2k
∼ 3.8× 10−9
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The conclusion is that we can write with a good accuracy

Ẽ2(p, q, z) = eikz × Ẽ1(p, q, 0)

which by inverse Fourier transform gives simply

E2(x, y, z) = eikz × E1(x, y, 0)

In other words, in the Fresnel equation

E2(x, y, z) = eikz
∫
Kp(x− x′, y − y′, z)E1(x

′, y′, 0) dx′ dy′

we have shown that the kernel Kp is a 2-D delta function for small z, so that
if we consider the amplitude on a surface of equation z = f(x, y), we can
write simply

E2(x, y) = eikf(x,y) × E1(x, y)

For the reflected wave E3(x, y, z), we reverse the point of view. If we
would compute E2 knowing E3 we would find (the propagation direction
being reverse)

E2(x, y) = e−ikf(x,y) × E3(x, y)

Therefore

E3(x, y) = e2ikf(x,y) × E1(x, y)

and the reflection operator is simply the phase factor ;

R = e2ikf(x,y) (2.29)

Let us recall that this only holds for ”thin” optical elements, in the above dis-
cussed sense. In particular, for a parabolic mirror, well adapted to gaussian
beams in the paraxial approximation, we have

R = exp

[
i
2π(x2 + y2)

λRc

]
(2.30)
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2.3 Fundamental TEM mode

It is possible to find a special solution of 2.28 under the axially symmetrical
form depending on two unknown functions of z:

Ψ(r, z) = eA(z) eikr
2/2q(z)

substituting this expression in 2.28 provides two coupled differential equa-
tions:

dq

dz
= 1 and

dA

dz
= − 1

q

from where we get firstly

q(z) = q0 + z

It is convenient to choose the constant q0 in such a way that at z = 0, the wave
is a real gaussian function of parameter w0. (i.e. of the form exp(−r2/w2

0)).
This clearly happens if

q0 = −ikw
2
0

2
= −i b

The parameter b = kw2
0/2 is called Rayleigh range. We have then q(z) =

z − i b, so that

A(z) = ln
[

1

z − i b

]
+ C

The arbitrary integration constant C may be chosen in order to have A(0) =
0, i.e. C = − ln(−1/ib), and then

A(z) = ln

[
1

1 + iz/b

]

or as well

A(z) = ln


 1√

1 + z2/b2


− i arctan(z/b)

on the other hand we have, separating the real from the imaginary part of
1/q:

ik

2q(z)
=

1

z + b2/z
+

i

b+ z2/b
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defining two new real functions , w(z) and R(z):

ik

2q(z)
= − 1

w2(z)
+

ik

2R(z)

The definitions of w(z) and R(z) are consequently:

w(z) = w0

√
1 + z2/b2

R(z) = z(1 + b2/z2)

w(z) is the beam half-width at abscissa z, and R(z) is the curvature radius
at the same point. These two real functions have concrete optical meanings,
but contain the same information as the complex function q(z) often called
complex curvature radius We have finally the complete solution for the
envelope:

Ψ(r, z) =
1√

1 + z2/b2
e−r

2/w(z)2 eikr
2/2R(z) e−i arctan(z/b)

The factor exp(ikz) may be added for representing the rapidly varying part.
The extra phase arctan(z/b) appearing during propagation with respect to
a plane wave is called Gouy phase. The solution Ψ(r, z) is a very special
one. One can find other solutions by considering the product of Ψ(r, z)
by polynomials in the variables (x/w , y/w). The solution Ψ(r, z) is called
TEM(0,0) propagation mode. It is the fundamental mode of two families of
modes discussed below.

2.4 Discrete bases for free space propagation

The set L2 of all complex functions f(x, y) of integrable square modulus may
be given the structure of a Hilbert vector space, by introducing the scalar
product:

〈 f , g 〉 =
∫

R2

dx dy f(x, y)g(x, y) (2.31)

If we think to these functions in terms of optical amplitudes at a given point
of the path of a light beam having the preferred propagation direction z, we
see that

‖f‖2 = 〈 f , f 〉 =
∫

R2

dx dy |f(x, y)|2 (2.32)
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x,y

z

Figure 2.11: Diffraction of a gaussian wave: beam width evolution and equal
phase surfaces

is nothing but the light power of the beam crossing the transverse plane at
z: restriction to L2 is therefore not too demanding. Obviously, a number of
bases can be constructed for this Hilbert space. It is possible to find discrete
bases, whose corresponding vectors are called Transverse Electromagnetic
Modes, and are labelled by two indices: TEM(m,n). The more often employed
bases for studying cavities and laser beams, are the Hermite-Gauss modes
HG(m,n) when rectangular coordinates are convenient, and the Laguerre-
Gauss modes LG(m,n) when polar coordinates are convenient. The fundamen-
tal mode has been defined above as: TEM(0,0)(x, y; z) = HG(0,0)(x, y; z) =
LG(0,0)(x, y; z) is, with r

2 ≡ x2 + y2,

TEM(0,0)(x, y; z) =

√
2

πw(z)2
eikz e−i arctan(z/b)e−r

2/w(z)2 eikr
2/2R(z) (2.33)

where w(z) gives the radius of the beam, R(z) the curvature radius of the
phase surface, b the Rayleigh range. The form of w(z) suggests a widening
of the beam (see Fig.2.11) during propagation, an angle aperture can be
evaluated by

lim
z→∞

w(z)

z
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This gives the gaussian aperture angle

θg =
λ

πw0

2.4.1 Hermite-Gauss modes

Extended solution

The fundamental solution found above can be extended in the following
scheme. Let us look for solutions of the form:

Ψ(x, y, z) = eA(z)eikr
2/2q(z)P [u(z)x]Q[u(z)y]

where A and q are complex functions of z alone, whereas u is a real function
of z, and P,Q real functions. The reason for these choices are firstly a sep-
aration of the variables x and y, and secondly the clear necessity to include
a variable scaling factor in the transverse plane accounting for the extension
of the wavefront, as seen in the fundamental mode. In this spirit, we ex-
pect the unknown function u(z) to be inversely proportional to w(z). After
straightforward calculations, the paraxial diffraction equation becomes:

2ik

(
∂A

∂z
+

1

q

)
P (X)Q(Y ) +

k2r2

q2

(
∂q

∂z
− 1

)
P (X)Q(Y )+

+ 2ik

(
∂u

∂z
+
u

q

)(
x
∂P

∂X
Q(Y ) + y

∂Q

∂Y
P (X)

)

+u2
(
∂2P

∂X2
Q(Y ) +

∂2Q

∂Y 2
P (X)

)
= 0 (2.34)

where we used the notations X ≡ u(z)x and Y ≡ u(z)y. Now we require the
function q(z) to be the same as in the fundamental solution, i.e.

∂q

∂z
− 1 = 0

in order to keep the same dependence for the width of the beam, and for
the curvature radius of the wavefront. Now we furthermore require that
separately:

u2
∂2P

∂X2
+ 2ikx

(
∂u

∂z
+
u

q

)
∂P

∂X
+ Λ′P = 0 (2.35)
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and

u2
∂2Q

∂Y 2
+ 2iky

(
∂u

∂z
+
u

q

)
∂Q

∂Y
+ Λ′′Q = 0 (2.36)

where Λ′, Λ′′ are real arbitrary constants. Owing to the fact that u must be
real, as also P and Q, it is necessary that

∂u

∂z
+
u

q

be purely imaginary. This is

ℜ
{
∂u

∂z
+

u

z − ib

}
= 0

or
1

u

∂u

∂z
= − z

z2 + b2

which gives the obvious solution

u(z) =
µ√

b2 + z2

where µ, an arbitrary constant, may be chosen in such a way that u(0) =√
2/w0. This is finally

u(z) =

√
2

w(z)

w(z) being the function defined above in the fundamental solution. But now,
we have:

∂u

∂z
+
u

q
=

ibu

z2 + b2

= i
2
√
2

kw3

so that eq.2.35 becomes:

2

w2

∂2P

∂X2
− 4

w2
X
∂P

∂X
+ Λ′P = 0

or
∂2P

∂X2
− 2X

∂P

∂X
+

Λ′w2

2
P = 0 (2.37)
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We know that polynomial solutions of eq.2.37 exist, if

Λ′w2

2
= 2n

where n is any integer; in this case, eq.2.37 defines the Hermite polynomial
of order n.

P (X) ≡ Hn(X)

Obviously, the same discussion holds for eq.2.36, and with

Λ′′w2

2
= 2m

we find
Q(Y ) ≡ Hm(Y )

Now, eq.2.34 reduces to:

2ik

(
∂A

∂z
+

1

q

)
− (m+ n)

4

w2
= 0

or
∂A

∂z
+

1

z − ib
+

i(m+ n)

b(1 + z2/b2)
= 0

so that:

A(z) = ln
(

1

z − ib

)
− i(m+ n) arctan

(
z

b

)

and
eA(z) = (1 + z2/b2)−1/2 e−i(m+n+1) arctan(z/b)

The HG basis

It has been shown that the PDE has Hermite-Gauss solutions of the form

HG(m,n)(x, y; z) = cm,n eikz Hm

(√
2

x

w(z)

)
Hn

(√
2

y

w(z)

)
×

e−i(m+n+1) arctan(z/b) e−r
2/w(z)2 eikr

2/2R(z) (2.38)

where the functions Hn(X) are the Hermite polynomials and cm,n a normal-
ization constant to be defined later.

Several properties of these functions are very convenient, and we recall
them herafter without any proof.
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• The Hermite polynomials are defined by:

Hn(x) = ex
2

(
− d

dx

)n
e−x

2

(2.39)

• The explicit expression is:

Hn(x) =
[n/2]∑

s=0

(−1)s
n!

(n− 2s)!s!
(2x)n−2s (2.40)

(the bracket means the integer part)

• They obey the following differential equation:

H ′′
n(x)− 2xH ′n(x) + 2nHn(x) = 0

• Their derivatives are given by:

H ′
n(x) = 2nHn−1(x)

• They obey a recurrence relation:

Hn+1(x) = 2x Hn(x) − 2n Hn−1(x) (2.41)

• They obey an orthogonality relation

∫ ∞

−∞
Hm(x)Hn(x) e

−x2dx =
√
π 2mm! δmn (2.42)

The normalization constants for the HG modes are therefore:

cm,n =
[

2

πw2

1

2m+nm! n!

]1/2
(2.43)

• They obey as well a closure relation:

1√
π

∑

p

1

2pp!
Hp(x)Hp(x

′) e−(x2+x′2)/2 = δ(x− x′) (2.44)
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• There is a translation formula:

Hn(x+∆/2) =
n∑

k=0

Ck
n Hn−k(x) ∆

k (2.45)

(it can be shown using the recursion formula)

• There is a scaling formula:

Hn(βx) =
[n/2]∑

k=0

n!

k!(n− 2k)!
βn−2k

(
β2 − 1

)k
Hn−2k(x) (2.46)

• There is a reduction formula:

Hm(x)Hn(x) =
min(m,n)∑

s=0

m!n! 2s

(m− s)!(n− s)!s!
Hm+n−2s(x) (2.47)

• It is possible to give the general expression of the Fourier Transform of
any mode ; We even give a more general formula under the following
form. Let

Ψ(m,n)(Z, x, y) = Hm

(√
2
x

w

)
Hn

(√
2
y

w

)
exp

(
−Z x2 + y2

w2

)

where Z is any complex number of positive real part. The Hermite-
Gauss functions correspond to Z = 1. The Fourier Transform is:

Ψ̃(m,n)(Z, p, q) =
πw2

Z

(
i

Z

)m+n (
2Z − Z2

)(m+n)/2 ×

Hm

(
pw√

2
√
2Z − Z2

)
Hn

(
qw√

2
√
2Z − Z2

)
exp

[
−w

2(p2 + q2)

4Z

]

(2.48)
For Z = 1 (HG functions) this is simply:

Ψ̃(m,n)(1, p, q) = πw2 im+nHm

(
pw√
2

)
Hn

(
qw√
2

)
exp

[
−w

2(p2 + q2)

4

]

In a certain sense, we see that the HG modes are eigenvectors of the
Fourier transform. The special case Z = 2 gives

Ψ̃(m,n)(2, p, q) =
πw2

2

(
ipw

2
√
2

)m (
iqw

2
√
2

)n
exp

[
−w

2(p2 + q2)

8

]
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• There is a useful Fourier transform:

1√
π

∫
e−x

2

Hn(x) e
ipx dx = (ip)ne−p

2/4 (2.49)

note that this formula has nothing to do with the Fourier transform of
a TEM mode, rather with the FT of the product of two modes.

• A consequence of the preceding integral (or an application of the gen-
erating function as well) is the expansion of a plane wave in terms of
Hermite polynomials:

eipx = e−p
2/4

∑

n≥0

(ip)n

2nn!
Hn(x)

• The first Hermite polynomials are explicitly:

H0(x) = 1

H1(x) = 2x

H2(x) = 4x2 − 2

H3(x) = 8x3 − 12x

H4(x) = 16x4 − 48x2 + 12

H5(x) = 32x5 − 160x3 + 120x

H6(x) = 64x6 − 480x4 + 720x2 − 120

etc...

The intensity pattern of some HG functions is shown on the figures 2.12,
2.13, 2.14.

2.4.2 The Laguerre-Gauss modes

Using polar coordinates (r, φ) instead of (x, y) in the transverse plane, a new
class of solutions to the PDE can be found, of the form

LGm,n(r, φ; z) = cm,n eikz
(√

2
r

w(z)

)n
L(n)
m (2r2/w(z)2)×
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Figure 2.12: Intensity pattern of a HG11 mode for w0 = 0.02 m
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Figure 2.13: Intensity pattern of a HG20 mode for w0 = 0.02 m
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Figure 2.14: Intensity pattern of a HG32 mode for w0 = 0.02 m



130 CHAPTER 2. BEAM OPTICS AND INTERFEROMETERS

e−i(2m+n+1) arctan(z/b) e−r
2/w(z)2 eikr

2/2R(z) cos(nφ) (2.50)

The functions L(n)
m (X) are the generalized Laguerre polynomials. They

are defined by

L(n)
m (x) =

ex

m! xn

(
d

dx

)m (
xn+me−x

)

They obey the recursion relation:

(m+ 1)L
(n)
m+1(x) = (2m+ n+ 1− x)L(n)

m (x) − (m+ n)L
(n)
m−1(x)

The first ones are as follows:

L
(n)
0 (x) = 1

L
(n)
1 (x) = n + 1− x

L
(n)
2 (x) =

(n + 1)(n+ 2)

2
− (n+ 2) x+

x2

2

L
(n)
3 (x) =

(n + 1)(n+ 2)(n+ 3)

6
− (n + 2)(n+ 3)

2
x +

n+ 3

2
x2 − x3

6

L
(n)
4 (x) =

(n + 1)(n+ 2)(n+ 3)(n+ 4)

24
− (n+ 2)(n+ 3)(n+ 4)

6
x +

+
(n + 3)(n+ 4)

4
x2 − n+ 4

6
x3 +

x4

24

The general formula is :

L(n)
m (x) =

m∑

s=0

(
n +m
m− s

)
(−x)s
s!

The normalization relation for the Laguerre polynomials comes from [11]:

∫ ∞

0
L(n)
m (x)2 xn e−x dx =

(m+ n)!

m!

so that the normalization constants cmn are:

cmn =
2

w

√
m!

π (1 + δn0) (m+ n)!
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As a special case, we see that the LGm,0 modes have all the same normaliza-
tion:

cm,0 =

√
2

πw2

The intensity pattern of some LG modes is given in the maps 2.15,2.16,2.17,.

2.5 Fabry-Perot: paraxial approximation

It has been seen that the free space propagation operator has, in a certain
sense eigenmodes called TEMm,n modes. They have the significant two fol-
lowing properties:

• They are of finite transverse extension, there is already a storage in the
transverse plane

• They have a parabolic equiphase surface

The second property allows to make ”matched” mirrors, of shape adapted
to the equiphase surface, reflecting the mode on itself (see Fig.2.18) A mode
matching two parabolic mirrors not always exists, depending on the curvature
radii of the mirrors and on the cavity length. Consider for instance a plane-
spherical cavity with a plane input mirror M1, and a spherical mirror M2

of curvature radius Rc, at a distance L. in order to be matched to M1, the
stored wave must be at its waist at z = 0 on the input plane. Then, the
stored wave must have a phase curvature radius of Rc at z = L, so that we
can write

Rc = L

(
1 +

b2

L2

)

b (Rayleigh parameter) having the definition previously encountered. This
gives

b =
√
L(Rc − L)

Clearly, this is possible only if Rc > L. This is a stability condition for that
type of cavity. If this condition is fulfilled, the cavity is able to store any
TEMm,n mode, provided it is near resonance. The size of the waist is

w0 =
√
λb/π
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Figure 2.15: Intensity pattern of a LG20 mode for w0 = 0.02 m
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Figure 2.16: Intensity pattern of a LG21 mode for w0 = 0.02 m
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Figure 2.17: Intensity pattern of a LG22 mode for w0 = 0.02 m
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Figure 2.18: Any Fabry-Perot cavity with curved mirrors
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The resonance condition, assuming a π/2 dephasing at each reflection,
is :

π − 2(m+ n + 1) tan−1
(
L

b

)
≡ 2pπ

the eigenmodes of the cavity are thus labeled by 3 integers, exactly as the
modes of a closed box. The frequency spacing between modes is a very
important feature in a cavity. If two modes have by chance close eigenfre-
quencies, a class of perturbations of the mirrors having the right symmetry
will pump power from one mode to the other due to the finite linewidths (see
below). In particular, if the cavity is operated on its fundamental mode, it is
better to choose the geometrical parameters in such a way that the nearest
transverse modes (m,n) 6= (0, 0) are well separated from the reference mode.
The TEM0,1 and TEM1,0 modes are especially well coupled with the TEM0,0

in case of misalignment of mirrors. Let us discuss this issue now. We call
Φm,n,p the total dephasing of the m,n, p mode over a round trip in the cavity.
We have:

Φm,n,p =
4πνm,n,pL

c
− 2(m+ n + 1) tan−1

(
L

b

)
+ π = 2pπ

We see that the frequency gap between two successive longitudinal reso-
nances, or Free Spectral Range (FSR), (∆p = ±1), is ∆νFSR = c/2L. we
see that the frequencies of the modes are given by

νm,n,p = ∆νFSR

(
p− 1

2
+ (m+ n+ 1)α

)

with α = tan−1(L/b)/π. Assume the operation mode has frequency ν0,0,p0,
the distances of the other modes are:

δνm,n,p = νm,n,p − ν0,0,p0 = (p− p0 + (m+ n)α) ∆νFSR (2.51)

The distribution of resonances being periodic, it is sufficient to study it over
a FSR. Given the length L of the cavity, the curvature radius Rc can be
chosen under the following constraints:

• it must be larger than L

• it must not cause a too large magnification factor between the input
mirror and the end mirror
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• it must give a value of α such that equation 2.51 has no zero solutions
for (m,n) small.

In the case of Virgo, the length of the arms is L = 3km and the curvature
radius of the end mirror Rc = 3.45 km, so that α ≃ 0.38238. The frequency
offsets of the 15 nearest tranverse modes are given in the following table.

Mode order (m+n) Frequency offset (Hz)
8 2950.62
3 7352.16
11 10302.78
6 14704.32
14 17654.94
1 19105.86
9 22056.48
4 26458.02
12 29408.64
7 33810.18
15 36760.79
2 38211.72
10 41162.34
5 45563.88
13 48514.49

Remark that the (0,1) and (1,0) modes are well separated from the (0,0),
and that there is no coincidence for orders lower than 15. The nearest are
the family (m+n=8) which are not easy to couple to (0,0) by a simple per-
turbation.

2.6 flat cavities

It is intersting to check what happens when a gaussian mode is launched
in a cavity involving flat mirrors. This would happen in the Virgo central
zone, in the absence of cavity end mirrors. This is also what happens to
the sidebands when antiresonant. Assume the input wave at its waist, of
half width w0. The reflection on flat and perfect mirrors does not affect the
diffraction of the beam, so that the mode inside the cavity, of amplitude
E(r) can be expressed as the sum of gaussian waves with increasing width,
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Figure 2.19: Intracavity mode intensity (solid lines) in a 12 m long flat/flat
cavity for gaussian input wave w0=4 cm for 4 finesses. Dashed lines : gaussian
beam having the same width for comparison. w=4 cm for F=50 (black) and
F=100 (red), w=4.26 cm for F=200 (green), and w=4.97 cm for F=400
(blue)
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curvature radius and Gouy phase. Let L be the length of the cavity and
b ≡ πw2

0/λ the Rayleigh parameter of the beam. We have:

E(r) = t
∞∑

n=0

Rn e2inkL
w0

wn
exp

[
− r2

w2
n

+ i
kr2

2Rn
− i arctan 2inL/b

]

where R ≡ r1 r2 (the product of the reflectivities of the mirrors, t the trans-
mission of the input mirror, and:

wn =

√

1 +
(
2nL

b

)2

Rn = 2nL+
b2

2nL

It is easy to check that this is as well:

E(r) = t
∞∑

n=0

Rn e2inkL
1

Zn
exp

[
− r2

w2
0Zn

]

with Zn ≡ 1 + 2inL/b. A numerical investigation shows that the maximum
surtension is obtained for 2kL ≡ 2π+x,x being a small number depending of
the finesse and confirms the intuitive idea that the intracavity mode is close
to the incoming one multiplied by the surtension of the cavity (see Fig.2.19),
the wavefront is very close to a gaussian parabolic one, with a curvature
radius decreasing with the finesse. (see Fig.2.20).

2.7 Hypergaussian modes

2.7.1 construction

It will be shown in a foregoing section that the thermal noise (random motion
of the mirror’s surface) depends on the area of the light spot on the mirror.
Large spots are better than sharp. With this respect, it appears than gaussian
modes are not the best choice. The idea of constructing more homogeneous
modes has been proposed long time ago by laser scientists in order to better
exploit amplifier media: such modes are called hypergaussian. A way of
constructing almost flat modes has been explored by D’Ambrosio ([16]). In



140 CHAPTER 2. BEAM OPTICS AND INTERFEROMETERS

-.05 -.04 -.03 -.02 -.01 0.00 0.01 0.02 0.03 0.04 0.05
-.40

-.35

-.30

-.25

-.20

-.15

-.10

-.05

0.00

0.05

0.10

F=50

F=100

F=200

F=400

r [m]

w
av

ef
ro

nt
 [

ar
b.

 u
ni

ts
]

Figure 2.20: Wavefront of reflected wave (solid lines) in a 12 m long flat/flat
cavity for gaussian input wave w0=4 cm for 4 finesses. Dashed lines :
fit of spherical wavefronts: Rc=64041m for F=50, Rc=33484 for F=100,
Rc=20879 for F=200, Rc=17053 for F=400
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this work, D’A. was dealing with a symmetrical cavity. In the case of plane-
spherical cavities, we try a similar method. On the assumed flat input mirror,
we consider the field as a superposition of gaussian modes according to :

Ψ(x, y, 0) =
1

πb2

∫

∆
dx0 dy0 φ(x− x0, y − y0)

where ∆ is the disk of radius b, centered at (x = 0, y = 0), and where

φ(x, y) =

√
2

πw2
0

exp

[
−x

2 + y2

w2
0

]

is a classical TEM00 mode. In other words, Ψ is the superposition of such
modes with various offsets, uniformly distributed on the disk of radius b.
Remark (though it is fairly clear) that Ψ(x, y, z) is actually a solution of the
paraxial diffraction equation, for it is a linear combination of solutions. It is
straightforward to express the field propagated at a distance z, propagation
of each elementary gaussian mode being known:

Ψ(x, y, z) = 2

√
2

πw2

w2

b2
ψ00(r, z)e

−iArctan(z/zR) (r ≡
√
x2 + y2)

with

ψ00(r, z) ≡
∫ b/w

0
e−Z(r/w−u)

2

e−2Zru/w I0(2Zru/w) u du

where Z ≡ 1−iz/zR (zR ≡ πw2
0/λ being the Rayleigh parameter), and where

I0(z) denotes the 1st kind modified Bessel function. w is the beam width at
the distance z, i.e.

w = w0

√
1 + z2/z2R

Following E.d’A, we have taken the following values (L being the length of
the cavity):

w0 =

√
λL

π
≃ 3.2 cm

b = 4w0 ≃ 12.8 cm

The integral ψ00(r, z) can be evaluated numerically by a simple Simpson
numerical integration technique, the function exp(−z)I0(z) having a quite
simple behavior. The initial intensity profile is as shown on Fig.2.21 The
intensity profile after 3 km propagation is plotted on Fig.2.22. The wavefront
is shown on Fig.2.23
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Figure 2.21: Intensity profile on the flat input mirror

2.7.2 Angular aperture and Fourier transform

It is remarkable that the mode is practically unchanged along the propaga-
tion. The difficult point is to make a mirror having the profile shown on
Fig.2.23. The aperture angle of the beam is obviously much smaller than the
gaussian’s. On the flat mirror, The beam may be viewed as the convolution
product of a gaussian of waist w0 with a uniform distribution on the disk
r < b. The Fourier transform of the beam amplitude is therefore the simple
product of the Fourier transform of the elementary gaussian beam with that
of the disk. A detailed calculation gives thus,

Ψ̃(p, q, 0) = 2
√
2πw2

0 exp
(
−w2

0ρ
2/4

) J1(ρb)
ρb

where ρ2 ≡ p2 + q2. By identifying ρ = k θ, we get

|Ψ̃(p, q, 0)|2 = ∝ exp
(
−2θ2/θ2g

) [2J1(θ/θb)
θ/θb

]2
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Figure 2.22: Intensity profile at 3 km

where θg = λ/πw0 is the gaussian aperture angle, and θb = λ/2πb is the
Bessel aperture angle. For w0 = 2 cm and b = 10 cm, θb happens to be 10
times smaller than θg, and the aperture angle is practically determined by θb
(see Fig. 2.24). This is consistent with the fact that the width of the beam
is practically constant along the diffraction length.

2.7.3 Normalization

It is difficult to compute directly the power carried by such a mode by simply
integrating the intensity in the plane (x, y). Instead, we do it in the Fourier
space. Owing to the Parseval-Plancherel theorem, we can write for the norm
P :

P =
∫

|Ψ(x, y)|2 dx dy =
1

4π2

∫
|Ψ̃(p, q, 0)|2 dp dq (2.52)

so that, using a precedent result:

P = 2
w2

0

b2
× 2

∫ ∞

0
exp(−w2

0x
2/2b2)

J1(x)
2

x
dx (2.53)
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Figure 2.23: Wavefront at 3 km

The integral can be carried out, yielding:

P (w0, b) = 2
w2

0

b2
F00 (2.54)

with

F00 ≡ 1 − exp(−b2/w2
0)
[
I0(b

2/w2
0) + I1(b

2/w2
0)
]

where I0(z) and I1(z) are the modified Bessel functions of the 1st kind. When
w0 is small, so that b/w0 is large, using the asymptotic values of the Bessel
functions we get:

F00 ≡ 1− 2w0√
πb

[
1− w2

0

8b2
− 3w4

0

128b4
− 45w6

0

3072b6
− ...

]
(2.55)

The normalized flat mode at its waist is:

Ψ(x, y, 0) =
1

π bw0

√
2F00

∫

∆
dx0 dy0 φ(x− x0, y − y0) (2.56)
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Figure 2.24: Angular distribution of the flat beam. Solid line: gaussian dis-
tribution, dashed line: circular aperture. Red dashed line: resulting angular
distribution
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and finally, at any distance z:

Ψ(x, y, z) = e−i arctan(z/zR) ×

× 2w

w0b
√
πF00

∫ b/w

0
exp

[
−Z(r/w − ρ)2

]
exp(−2Zrρ/w) I0(2Zrρ/w) ρ dρ

(2.57)
with the same notation as above:

Z ≡ 1− iz/zR, zR ≡ πw2
0/λ, w ≡ w0

√
Z.Z

2.7.4 Coupling with gaussian beams

It is of some importance to know the coupling rate of such flat beams with
ordinary gaussian modes. We can for this compute the scalar product of the
flat mode Ψ(x, y) with for instance the fundamental gaussian mode of waist
w : φ00(x, y), at their common waist:

Γ00 ≡ 〈Ψ, φ00〉 =

√
2

πw2

√
2

πw2
0

1

πb2

∫

∆
dx0 dy0

∫

R2
dx dy

exp

[
−x

2 + y2

w2

]
exp

[
−(x− x0)

2 + (y − y0)
2

w2
0

]
(2.58)

after some elementary algebra, we find:

Γ00 =
2w0w

b2

{
1− exp

[
− b2

w2
0 + w2

]}
(2.59)

The power directly coupled from a gaussian beam into a flat beam (i.e. Γ2
00)

is thus extremely weak. We give on Fig.2.25 a plot of this power transfer
versus the waist of the incoming gaussian beam, showing that only a few
percent of the power can be this way injected in a flat beam. The coupling
becomes worse and worse as the parameter b increases, and as the parameter
w0 decreases (the most the flat beam is interesting for thermal noise, the
worst is its direct coupling to a gaussian beam). It is thus necessary to
devise other ways of coupling power into flat-beam cavities.
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Figure 2.25: Coupling rate of a gaussian beam of waist w into a flat mode of
parameters w0, b. Solid line: b = 10 cm, w0 = 2 cm. Short dashed line : b =
12 cm,w0 = 2 cm. Long dashed line : b = 10 cm, w0 = 1 cm.
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Figure 2.26: Diffraction losses of a flat beam of parameters b = 10 cm (solid
line), b = 12 cm (dashed line) and w0 = 3.2 cm

2.7.5 Diffraction losses of flat beams

Flat beams have been seen to have a wide extension on the mirrors (this is
exactly the reason why they have been designed). It may be useful to have
an idea of the diffraction losses for such modes. How the clipping of the
beam by a finite mirror reduces the reflected power. The following figure
(2.26) shows the decrease of diffraction losses for two cases :b = 10 cm, 12
cm and w0 = 3.2 cm. We see that for Virgo-like mirrors (a = 17.5 cm), the
diffraction losses are negligible.



Chapter 3

Numerical methods

An optical instrument is generally composed of optical elements like lenses,
mirrors, and of space between them. For studying any property of the in-
strument, we have to represent the action of each of these elements on a
light beam. Everyone understands that space produces a diffraction of the
beam, thin lenses or almost flat mirrors pure refraction or reflection, and
thick lenses both. There are a lot of ways of representing numerically a light
beam, for, instance:

• by sampling its complex amplitude on a rectangular grid in the x, y
plane

• by mapping it on a polar mesh in the (r, θ) plane

• by expanding it on a discrete basis of modes

to each of these decisions correspond a special way of computing the field
diffracted at a distance z. The method to choose depends obviously of the
type of effects we want to analyze. In the case of axial symmetry, the polar
representation will be convenient. In case of very small misalignments of
mirrors in a resonant cavity, the modal expansion will do the job. Anyway,
each of the corresponding algorithm belong to the class of ”spectral methods”
expanding the optical amplitudes on a basis of simple functions for which the
diffraction/refraction problem is already solved. These simple functions will
be

• plane waves in the case of Fourier (or Hankel) transform based methods

• TEMm,n modes (HG or LG) in the modal methods

149
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3.1 Numerical propagation using Fourier trans-

forms

3.1.1 On the discrete Fourier transform

When the complex amplitude is sampled on a rectangular grid with equally
spaced sampling points, it is possible to use a discrete 2D Fourier Transform
to propagate the field. The Discrete Fourier Transform (DFT) comes from
the crude approach of the numerical Fourier Transform of any function Φ(t)
which is zero outside the interval [0,T ]. The Fourier Transform then reduces
to:

Φ̃(f) =
∫ T

0
e2iπft Φ(t) dt

For a numerical integration, we can cut the interval in N slices of width
∆t = T/n, and write approximately:

Φ̃(f) =
T

N

N−1∑

j=0

e2iπfjT/NΦ(jT/N)

Now it is possible to sample the function in the frequency domain too. The
smallest frequency interval we can consider is obviously ∆f = 1/T , because
the longest time interval on which the function Φ can be studied is T . The
sampling will thus be:

fm = m× 1

T
and the samples of the Fourier Transform are:

Φ̃m ≡ Φ̃(m/T ) =
N−1∑

j=0

e2iπmj/NΦj (3.1)

with the notation Φj = Φ(jT/N). Eq.(3.1) expresses the DFT.
If we consider the vector Φ̃m, several remarks arise

• It is easily seen that

Φ̃m+N = Φ̃m

showing that the DFT has period N with respect to m, it is therefore
sufficient to compute {Φ̃m ; m = 0, . . . , N − 1}.
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Figure 3.1: Assign frequencies to the DFT samples

• Clearly m = 0 corresponds to the mean of the function Φ(t), and thus
to the value at f = 0 of its Fourier transform. Now, it is easily seen
that

Φ̃N−m = Φ̃−m

and as a result, the second half of the vector {Φ̃m} contains the negative
frequencies (see Fig.(3.1))

• The maximum frequency is thus

fmax =
[
N

2

]
1

T

• Consider a Fourier transform followed by the reciprocal:

Φ̃m =
1

N

N−1∑

j=0

e2iπmj/NΦj

(as already seen, the time element is T/N , and the frequency element
is 1/T , so that the time × frequency element is 1/N) then

˜̃
Φn =

1

N

N−1∑

m=0

N−1∑

j=0

e2iπm(j−n)/NΦj

but −N + 1 ≤ j − n ≤ N − 1, so that

N−1∑

m=0

e2iπm(j−n)/N =
e2iπ(j−n) − 1

e2iπ(j−n)/N − 1
=

{
0 if j 6= n
N if j = n

and consequently,
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˜̃
Φn = Φn (3.2)

which shows that the ”approximate” of the inverse FT is the exact
inverse of the ”approximate” FT. Practically, when implementing any
DFT algorithm, this is the first property to check.

• Let us denote here by

Φ̃N,m

the N -points DFT of Φ. Assume that N = 2N ′ even, and m = 2m′

too. We can write

Φ̃N,m =
T

N

N−1∑

j=0

e2iπmj/NΦj =
T

2N ′

2N ′−1∑

j=0

e2iπm
′j/N ′

Φj

By splitting the sum into two segments we get

Φ̃N,m =
1

2

T

N ′

N ′−1∑

j=0

e2iπm
′j/N ′

Φj +
1

2

T

N ′

2N ′−1∑

j=N ′

e2iπm
′j/N ′

Φj

and by renaming j = j′ +N ′ in the second sum,

Φ̃N,m =
1

2

T

N ′

N ′−1∑

j=0

e2iπm
′j/N ′

Φj +
1

2

T

N ′

N ′−1∑

j′=0

e2iπm
′j′/N ′

Φj′+m

if we note Φ(1) and Φ(2) the two halves (of lengths N ′ = N/2) of the
input vector Φ (of length N), we have the following property

˜Φ2N ′,2m′ =
1

2

( ˜
Φ

(1)
N ′,m′ +

˜
Φ

(2)
N ′,m′

)
(3.3)

In the case where m = 2m′ + 1 is odd, we have:

Φ̃N,m =
1

2

T

N ′

N ′−1∑

j=0

e2iπm
′j/N ′

eiπj/N
′

Φj − 1

2

N ′−1∑

j′=0

e2iπm
′j′/N ′

eiπj/N
′

Φj′+m
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If we introduce the new function Ψj ≡ e2iπj/N × Φj , we see that the
preceding equation reads:

˜Φ2N ′,2m′ =
1

2

( ˜
Ψ

(1)
N ′,m′ +

˜
Ψ

(2)
N ′,m′

)
(3.4)

and the conclusion is that the N -ranks Discrete Fourier Transform es-
sentially reduces to two N/2-rank partial transformations of the two
halves of the input vector. This is the fundamental remark that led to
FFT algorithms. FFT routines allow to compute rank N DFT’s with
NLog2N algorithms instead of N2. The result is a tremendous increase
of the computational speed of Fresnel diffraction (FFT) compared to
the general Kirchhoff integral. The gain is for a 2 dimensional FT:

[
N

Log2N

]2

for N = 128 this is a gain larger than 300 ! But this is at the price of a
restriction of the validity of the method (very small diffraction angles).

It must be clear that the result of a DFT is not a sampling of the result of
the continuous transformation. The finite step integration which was at the
starting point of the algorithm can only converge towards the true FT as N
increases. The linear algebra involving vectors of size N and rank N DFT’s
is perfectly closed due to eq.(3.2), but it represents a world different from
reality. We give for instance the result of a basic experiment. We consider
the function

F (t) = exp

(
− t2

2τ 2

)

in our experiment, we take the time constant τ=1s. Its Fourier transform is:

F̃ (f) =
√
2π τ exp

(
− 1

2
(2πfτ)2

)

and we compare a N -sample of the continous FT of F to the DFT of a
N -sample of F (see table (3.1.1)). The interval over which the function is
sampled is called window. The size of the window must be chosen such that
the function takes vanishing values near the ends of the window. Moreover,
there is an optimal density of samples, which implies that when the size of
the sample is changed, the size of the window giving the optimal agreement
changes too.
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Sample size Optimal window rms error
16 10s 6.9 10−7

32 14s 1.8 10−12

64 17s 7.2 10−17

In this case, it can be seen that increasing the size of the sample is useless,
since at N=64, the ultimate precision of the computer is reached.

We have seen that the DFT has the dichotomic property, reducing in
principle a N -DFT to two N/2-DFT’s. The basic of the FFT is to recursively
compute any N -DFT from a series of initial 2-DFT’s. In this elementary
scheme (due to J. Cooley and J. Tukey [10]), N has obviously to be an
integer power of 2. Moreover, it is clear that the number of recursions is
log2(N), so that the number of operations, grows as N × log2(N), which
is a tremendous improvement with respect to the naive DFT scheme. For
instance, in a 2D Fourier Transform, if a 1024×1024 2D sample is needed,
FFT provides a factor of roughly 104 gain in CPU time. All other properties
are exactly those described for the DFT.

The Fourier Transform of the paraxial diffraction kernel

K(x, y,∆z) = − i

λ∆z
exp

(
−ik(x

2 + y2)

2∆z

)

is:

K̃(p, q,∆z) = exp

(
−i∆z(p

2 + q2)

2k

)

Now, if we intend to use a DFT for computing the diffraction integral
according to the scheme

E2(x, y, z +∆z) =
˜

K̃P(p, q,∆z) × Ẽ1(p, q, z) (3.5)

we need the discretization of K̃(p, q,∆z) with respect to p, q. We remem-
ber that the frequency increment in the DFT is δf = 1/T where T is the
time window. In terms of spatial circular frequencies, the increment will be
δp = 2π/Fx, where Fx is the x side of the 2D spatial window. We have also
δq = 2π/Fy. The discretization is therefore of the form:

K̃(m,n,∆z) = exp

[
− i πλ∆z

(
m2

F 2
x

+
n2

F 2
y

)]
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If we remember that the DFT has a specific way of sorting the frequencies,
we could think that we have to correctly arrange the FFT of the input field,
before multiplying by K̃. Clearly, it is more efficient not to correct the
FFT’s, but rather write the propagator according to the same convention.
For a square computation window of size window the FORTRAN sequence
calculating K̃(i, j, z), could be:

mil=n/2+1

do i=1,n

if (i.le.mil) then

ind1=i-1

else

ind1=i-1-n

endif

do j=1,n

if (j.le.mil) then

ind2=j-1

else

ind2=j-1-n

endif

square=ind1**2+ind2**2

phase=-pi*lambda*z*square/window**2

ktilde(i,j)=cmplx(cos(phase),sin(phase))

enddo

enddo

3.1.2 FFT-based propagation algorithms

A step ∆z of propagation will be carried out following the scheme showed on
Fig.3.2, and propagation steps can be linked into series corresponding to the
various interfaces of an optical system. The optical amplitudes are sampled
on a rectangular grid (it is not necessary to use a square grid. If we have
spatially squeezed beams, one direction can be larger and more sampled than
the other). Call a(i,j) the complex array (of size n×n) representing the
amplitude at z = 0. The propagation step is for instance

c-------------------------------------------------------------

c the subroutine named cfft2d(m,n,ar,iflag) represents any
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Figure 3.2: propagation step

c procedure carrying out the 2D-FT of a complex array

c

c m,n : size of the array to be transformed

c ar : the array to be transformed, and on return, the

c transformed array

c iflag = 1 : direct transform

c iflag = -1: inverse transform

c------------------------------------------------------------

call cfft2d(n,n,a,1)

do i=1,n

do j=1,n

a(i,j)=a(i,j)*ktilde(i,j)

enddo

enddo

call cfft2d(n,n,a,-1)

c-------------------------------------------------------------

after what a(i,j) represents the propagated amplitude. Mirrors are sam-
pled on the same grid, and represented by complex arrays:

c-------------------------------------------------------------

subroutine defmirr(n,window,reflect,radius,curvature,mir)

c

c returns an array of samples of the phase equivalent

c of the mirror for given parameters

c

c n : rank of the arrays

c window : computation window

c reflect : photometric amplitude reflectivity
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c radius : radius (half size) of the mirror

c curvature : inverse of curvature radius

c mir : returned array representing the mirror

c

implicit none

c

integer n,i,j

real*8 reflect,radius,curvature,pi,x,y,rp2

real*8 window,lambda,dx,phase

complex*16 ci,mir(n,n)

c

data pi/3.141592653589793d0/

data ci/(0.d0,1.d0)/

data lambda/1.064d-6/

c

dx=window/n

do i=1,n

x=(i-1)*dx-window/2

do j=1,n

y=(j-1)*dx-window/2

rp2=x*x+y*y

if (rp2.gt.radius*radius) then

mir(i,j)=0

else

phase=2*pi*rp2*curvature/lambda

mir(i,j)=ci*reflect*dcmplx(dcos(phase),-dsin(phase))

endif

enddo

enddo

return

end

A reflection will then be carried out by a simple term to term product of the
amplitude by the mirror :

do i=1,n

do j=1,n

aref(i,j)=ain(i,j)*mir(i,j)

enddo
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enddo

The main example we shall study is the case of a Fabry-Perot cavity. In fact,
round trips in the cavity will be implicitly replaced by a direct propagation
through a series of thin lenses. It is remarkable that propagation looks just
like a lens (see below) in the Fourier space, so that diffraction and refraction
processes are exchanged by the FT. As an example we can make the following
numerical experiment. Start from the TEM00 amplitude at its waist (this
situation exists at the corner mirrors of the Virgo cavities, with w0 ≃2 cm,
then propagate over the distance L =3 km, first by using the analytical
formula giving the continuous paraxial result, second by using one step of
the FFT scheme, with a sampling of n×n over a grid of size s. Then make
numerically the two wave interfere. For measuring the distance between two
complex amplitude arrays, we use the Hilbert Space metrics:

d(e1, e2) =


 s
n

n−1∑

i,j=0

|e2,ij − e1,ij |2


1/2

which maybe interpreted as the square root of the total power in the inter-
ference of the two waves. The following table gives an idea of the convergence
of the discrete world towards continuous.

Sample size Optimal window rms error
32 34 cm 4.9 10−5

64 49 cm 1.6 10−8

128 70 cm 4.9 10−15

256 81 cm 8.3 10−15

Now, we can also propagate a TEM00 wave having such a waist (w0 ∼ 2
cm) that the curvature radius of its wavefront matches a 3.45 km curvature
radius mirror. In the paraxial theory, starting from the waist (plane wave),
the reflected wave exactly coincide, after the return trip, with the original.
We can carry out this experiment by numerical propagation, and compare
the image after the round trip with the original. The result depends of the
size of the window, and on the sampling rate. We see on (Fig.3.3) these de-
pendences. The difference between the theoretical propagated mode and the
numerically propagated one can be visualized as an interference (see Fig.3.4).
The shown intensity distribution represents the computational noise, and the
cross pattern reflects the square grid used for the discrete sampling in the
window.
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Figure 3.3: Round trip error vs window size (m). n=50 (squares) n=100
(circles), n=150 (triangles)
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Figure 3.4: Interference fringe between exact and numerically propagated
TEM00
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3.1.3 Finding the field reflected off a resonant cavity

Assume an amplitude Ein(x, y) is entering a Fabry-Perot cavity. The intra-
cavity field B(x, y) obeys the following equation:

B = t1 Ein − r1r2 M1 × PL ×M2 × PL B (3.6)

(see Fig.1.6 for notation). M1,2 are the reflection operators on the two
mirrors respectively, for instance given by (2.30). Mathematically, this is
an implicit linear equation, and it could be in principle solved by matrix
inversion. But for a n×n sampling grid, the linear operator PL is a n2×n2 rank
operator, which, for large n would lead to invert huge matrices. It is therefore
much more convenient if possible, to solve eq.(3.6) by successive iterations,
provided some inital guess of the intracavity field. For instance, if we study
small geometrical defects of the mirrors surfaces, the initial guess could be
the ideal TEM00 mode Φ00(x, y), with the correct surtension coefficient:

Bguess(x, y) = < Ein,Φ00 >
t1

1 − r1r2
Φ00(x, y)

But other choices are possible. The speed of the convergence to the
solution depends on the finesse of the cavity. Once the intracavity field
B(x, y) is found, the reflected amplitude is obtained by

Eout = M∗
1Ein + PL ×M2 × PLB

. It is possible to bring into evidence the various eignemodes of a parabolic
Fabry-perot cavity. In the following numerical experiment we try to scan
the different resonances of a VIRGO type cavity by adding a varying phase
Φ ∈ [0, 2π] to the propagator, in order to simulate the fine tuning of the
cavity. The inital tuning is assumed to correspond to a TEM00. If the input
field is a pure TEM00, we see only the resonances of the fundamental (Fig3.5),
other modes being orthogonal to the input field are never excited. In order
to excite higher order modes, we have to take an input field not strictly
orthogonal to the TEM00. For instance, adding terms in x, y2 , x3, . . . to
the phase of the input wave allows resonances of TEMmn up to m + n = 4,
as can be seen on fig.3.6. A more accurate study shows that the resonances
are slightly different from their theoretical values. This is a consequence of
the discretization of the field, of the mirrors, of the propagator. The discrete
world has different rules. By increasing the order of the calculation (the
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Figure 3.5: Fabry-Perot cavity : resonances of the fundamental mode
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Figure 3.6: Fabry-Perot cavity : excitation of the TEMm,n modes. Dashed
lines correspond to the first theoretical resonances, and are labeled by m+n.
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preceding was carried out on a 64×64 grid), this small discrepancy vanishes.
In order to drive the cavity exactly at resonance, it is necessary to achieve
a fine tuning of the propagator. The brute force method would consist in
computing the power in the intracavity field for various values of the varying
phase precedingly introduced, and search for the maximum, but this would
result in a very time costly code. It is better to use the following scheme.
Let us denote by C the cavity operator:

C = M1 × PL × M2 × PL

and φ an arbitrary phase representing the fine tuning of the cavity. The
intracavity field B obeys the implicit equation

B = t1 A + eiφC B (3.7)

where A is the input field. If the input field is the fundamental mode TEM00

with an amplitude a, and if for the sake of simplicity we note {ψp ; p =
1, 2, . . . ,∞} (with a unique index) the basis of TEM modes, we can write:

B = b0ψ0 +
∑

p>0

bpψp

For a small perturbation, the coefficients {bp ; p > 0} are first order quanti-
ties. By taking the scalar product of eq.3.7 with the fundamental, we get

b0 = t1a + eiφ


b0 < ψ0 , C ψ0 > +

∑

p>0

bp < ψ0 , C ψp >



At the lower order we get

b0 =
t1 a

1 − eiφ < ψ0 , C ψ0 >

making clear that the value of φ which corresponds to resonance is

φ = −Arg [< ψ0 , C ψ0 >]

The one way propagator must therefore be corrected by the phase factor

eiφ/2

The phase discrepancy φ of discrete vs continuous eigenmodes of the
cavity is given in the following table.
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Sample size Optimal window phase corr.
32 34 cm -7.4 10−8 Rd
64 49 cm -4.5 10−15 Rd
128 70 cm -6.1 10−16 Rd

3.1.4 The Michelson Interferometer

It is easy to model a Michelson interferometer having two cavities as arms,
for instance is order to study the field reflected off a cavity having imperfect
mirrors, we take a perfect reference cavity and recombine the two reflected
fields. Denoting by E1 , E2 the amplitides reflected by the two cavities, the
total output field is

Etot = E1 + eiφ E2

where φ represents the differential optical path between the two arms. It is
necessary to adjust this phase to obtain the darkest field. In the ideal case,
the phase is π and the resulting field is zero. In the general case, let

< E1 , E2 > = |E1|.|E2| eiα

it is easy to obtain the following equation for the power ;

Ptot =
(√

P1 −
√
P2

)2

+ 4
√
P1 P2 sin

2[(φ − α)/2]

so that it is clear that we must take φ = α, i.e.

eiφ =
< E1 , E2 >

|E1|.|E2|
As an example, we consider a Michelson having the same parameters as
Virgo, and in which one spherical mirror has a wrong curvature radius (1%
error): After computation, we read that the relative power on the dark fringe
is 1.6 10−3, the intensity field having the structure shown on Fig.3.7. The
interference between the two slightly differently curved wavefronts gives a
series of rings of which one is visible in the non zero zone of the globally
gaussian intensity. Another example corresponds to a misalignment of a
mirror. For instance a corner mirror of one cavity has a pointing error of
10−8 Rd. The relative power on the dark fringe is 4.810−8. The structure
of the fringe (see Fig.3.8) is analogous to the intensity pattern of a TEM01

mode.



166
C
H
A
P
T
E
R

3
.

N
U
M
E
R
IC

A
L
M
E
T
H
O
D
S

-0.040

-0.020

 0.000

 0.020

 0.040y

-0.040

-0.020

 0.000

 0.020

 0.040x

F
igu

re
3.7:

M
ich

elson
in
terferom

eter:
D
ark

frin
ge

p
attern

for
1%

cu
rvatu

re
rad

iu
s
error

on
a
far

m
irror



3.1. NUMERICAL PROPAGATION USING FOURIER TRANSFORMS167

-0
.0

40

-0
.0

20

 0
.0

00

 0
.0

20

 0
.0

40

y

-0
.0

40

-0
.0

20

 0
.0

00

 0
.0

20

 0
.0

40

x

Figure 3.8: Michelson interferometer: Dark fringe pattern for 10−8 Rd point-
ing error on a corner mirror
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3.1.5 The power-recycled Michelson interferometer

It is possible to model a power recycled interferometer by an external loop,
starting on an estimate of the recycled field E then involving two subloops
for describing the two FP cavities. A such code would be however very time
consuming without necessity. It is much more convenient to use one loop.
We begin by a first estimate of the recycled field E and of the two intracavity
fields F1 and F2 (see Fig.3.9 for notation) We denote by Ri, Ti respectively
the operators associated to the reflection and the transmission of mirror Mi.
The 6 mirrors involved are: the recycling mirror MR, the corner mirror M11

and the far mirror M12 of the North cavity, and the corresponding M21,
M22 for the West cavity. The splitter is MS. We start from three estimates
(E, F1, F2) of the internal fields corresponding to the easily computed ideal
situation (perfect mirrors), then new estimates can be computed according
to the following scheme:

Enew = TRA+RR [P1R11P1 + P2R21P2] E
old+RRP1T11C1 F old

1 +RRP2T21C2 F old
2

F new
1 = T11P1E

old +R11C1 F old
1

F new
2 = T21P2E

old +R21C2 F old
2

where Ci denotes a round trip in cavity #i (i.e. propagation/reflection/propagation),
P1 a propagation along the North short arm through the splitter, and P2 a
propagation from South to West by reflection on the splitter. Then the pro-
cess is iterated until the hilbertian distance between two successive estimates
is small enough. At the end, the field in the dark fringe is B given by

B = [RSP ′
1R11P1 + TSP ′

2R21P2] E +RSP ′
1T11C1 F1 + TSP ′

2T21C2 F2

For instance, we have taken the maps of two recently produced end mir-
rors (C01077 and C02017 respectively), and used the preceding algorithm
for checking the best mutual attitude of both when installed in a power-
recycled interferometer. The two mirrors are not perfectly identical, as well
for the curvature radius than for the roughness pattern. The following table
summarizes the main parameters:

Mirror # Curv. Rad. Matched Waist RMS roughness
C01077 3584 m 2.12 cm 2.8 nm
C02017 3624 m 2.15 cm 3.6 nm

The roughness maps are shown on Fig.3.10 and Fig.3.11 respectively
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Figure 3.9: Sketch of a power recycled Michelson
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Figure 3.12: Power on dark fringe for various mutual angles (see text for
comments)

It is instructive to run the code with different mutual angles. The two
surface maps may be rotated in the (x, y) plane by angles θ1 and θ2 respec-
tively, and the dark fringe computed as above. The results are summarized
in the following plot (Fig.3.12): The various types of dots correspond to con-
sistence tests. The red squares are obtained by setting the rotation angle of
map #1 to zero and varying the roation angle of map #2. The green crosses
are obtained by the inverse calculation: map #1 is left unchanged, and map
#2 rotated by opposite angles. Cyan triangles are obtained by rotating the
two mirrors by identical angles. The fact that the values found for the same
angular difference but different offsets are only almost equal is due to the
necessary interpolation that causes some fluctuations of the mirrors surfaces.
A merit figure proportional to the SNR can be evaluated according to the
formula

M =

√
Pic1 Pic2

Prec
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where Pic1 (resp. Pic2) is the power in cavity #1 (resp. # 2), and Prec the
power in the recycling cavity. It is known ([?]) that the signal to noise ratio
of a recycled Michelson with FP cavities is

• proportional to the finesse of the two cavities. The finesse of a cavity
can be estimated by

F =
π

2

Pic

Pin

where Pin is the incoming power. We have here Pin ∼ Prec/2, so that,
for our two cavities:

F1,2 = π
Pic1,2

Prec

The two cavities having in general different finesses, we take the geo-
metric average, so that:

F = π

√
Pic1 Pic2

P 2
rec

• also proportional to the square root of the power stored in the recycling
cavity,

This explains the structure of the merit factor. Its optimum value corre-
sponds to a recycling surtension of 50 and cavity finesses of 50. For 1 W
laser power, this is Prec = 50 W, so that the power entering the cavities is
Pin = 25 W, and the intracavity power Pic = 25W × 2 × 50/π = 795.8 W.
The maximum merit factor is therefore

Mmax = 795.8/
√
50 = 112.54W1/2

The quantity plotted on Fig.3.13 (red squares) is M/Mmax ≡ SNR/SNRmax

Because the mirrors have not exactly the same curvature radii, the question
of the mode to be injected in the interferometer could be raised. It seems
reasonable to choose a waist such that the curvature radius of the wavefront
matches the averaged curvature radius of the two mirrors, i.e. 3604 m. In
Fig.3.14 we have varied the input waist and computed the corresponding
merit factor. In Fig.3.14,
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Figure 3.13: SNR vs mutual angle of end mirrors (red squares), relative power
on the dark fringe (green triangles)
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the red sqares correspond to the actual SMA mirrors in the nominal
reciprocal attitude (marks up). The green disks correspond to the same
situation (different curvature radii) but with zero residual roughness. The
blue crosses correspond to two identical mirrors without roughness, of same
curvature radius 3604 m. In all cases, mirrors have a finite size (35 cm
diameter). The computation grid was a 1m side square, giving 256×256
samples. The three dotted vertical lines correspond to values of w0 such
that the wavefront has respectively 3854m, 3604m, 3624m curvature radius.
Finally, in the best situation, the dark fringe has the following pattern (see
Fig.3.15):
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Figure 3.15: darkest fringe: intensity pattern (logarithmic plot)
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The three black circles have diameters respectively w0 = 2.135 cm, 2w0

and 3w0, where w0 is the waist (gaussian radius of the spot on the mirror).

3.1.6 On the intrinsic limitation to basic DFT-based
algorithms

When chosing the spatial window and the rank of the transform, special care
must be taken of the angular limitation induced by the finite sampling of
optical amplitudes. We know that the maximum spatial frequency, for the
rank N and the window F is

pmax =
Nπ

F

This is a limitation on the structure of the admissible optical amplitudes: if
their variations are of scale shorter than Λmin ≡ 2π/pmax = 2F/N , cor-
responding to the Shannon frequency, aliasing will follow, and the algorithm
fails. The Fourier variable p being interpreted as a transverse component of
an oblique wave vector, we can set pmax ≡ kθmax where θ represents the
propagation direction with respect to the main optical axis. We can thus
write:

θmax =
Nλ

2F
=

λ

2D
D being the size of the sampling interval. This means that larger divergences
are forbidden. For a gaussian beam of amplitude

f(r) = exp
[
− r2/w2

0

]

having a Fourier transform given by

f̃(ρ) =
π

w0
exp

[
− ρ2w2

0/4
]

with ρ2 = p2 + q2, by substituting ρ = kθ, we get

f̃(θ) =
π

w0

exp
[
−θ2 / θ2g

]

where θg ≡ λ/πw0 is the gaussian divergence angle of the beam. The
spectrum becomes negligible for θ0 = σ× θg where σ of the order of 3 or 4.
Owing to the condition θ0 < θmax, we get the condition

D <
πw0

2σ
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On the other hand, the window must be significantly larger than w0, say
F > σ w0, so that we get the new limitation

D >
σw0

N

The compatibility of these two conditions requires that

N >
2σ2

π

which is easily met. However, we would have serious troubles if after diffrac-
tion, the intensity distribution were out of, or larger than the computation
window.

3.1.7 Propagation with magnification

If a beam is foreseen as very divergent, it may be difficult to choose a window
and a sampling rate adapted to the situation. For intance assume we want
to propagate a TEM00 mode of waist w0 = 5 mm, over a distance of L =
3 km (the wavelength is about 1 µm). The beam width after diffraction on
the distance L is w1 ∼ 203 mm. If we decide to take a common square
computation window at both ends of the path, we see that is must be much
larger than w1, say F ∼ 10 × w1 ∼ 2m. This implies that the maximum
spatial frequency is

pmax =
2π

F
× N

2

where N is the sampling rate. Now, the Fourier transform of the input beam
is

φ̃(p, q) =
√
2πw2

0 exp
[
−(p2 + q2)w2

0/4
]

so that the maximum frequency can be estimated at about

pmax = 5/w0 = 103 m−1

by comparing with the preceding expression of pmax, we get

N ∼ 640

which is very demanding in terms of memory and cpu time. Moreover, in the
initial window, the wavefront is certainly undersampled, and the preceding
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rough estimation based on a pure TEM is still optimistic for a distorted
wavefront. It is therefore sometimes mandatory to use a modified paraxial
algorithm based on a function and coordinates transform. Let us return to
the paraxial diffraction equation:

(2ik∂z +∆T )Ψ = 0

where Ψ(x, y, z) is the unknown wave function, and ∆T ≡ ∂2x+∂
2
y . Consider

a new wave function F (x, y, z) defined by

Ψ(x, y, z) =
1

z
exp

[
ikr2/2z

]
F (x, y, z)

F obeys the following partial differential equation:

[
2ik∂z +∆T +

2ik

z
(x∂x + y∂y)

]
F = 0

If now we introduce the new coordinates:

x′ =
αx

z
(3.8)

y′ =
αy

z
(3.9)

z′ = α2
[
1

z0
− 1

z

]
(3.10)

where α and z0 are arbitrary constants, it is easily seen that the diffraction
equation becomes

(2ik∂z′ +∆′
T ) F = 0

in other words, the paraxial diffraction equation is invariant under the com-
bined transformation of function and coordinates. This has been first re-
marked and used by A. E. Siegman (see [13]). We can exploit this fact, in
the case of strong focusing or defocusing to remove the convergent or diver-
gent part of the field. Consider a freely diffracting wave which has a beam
width w0 at z = 0, and a beam width w1 at z = L (see Fig.3.16), we may
choose the constants α and z0 in such a way that the change of coordinates
follows the transverse extension of the field, namely take α = z0 and

z0 + L

z0
=

w1

w0
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this determines z0:

z0 =
L

w1/w0 − 1

the new coordinates are now

x′ =
z0
z
x (3.11)

y′ =
z0
z
y (3.12)

z′ = z0 −
z20
z

(3.13)

so that the initial plane is located at z = z0 where

z′0 = 0, x′0 = x, y′0 = y

and the final plane at z = z0 + L, where

z′1 =
w0

w1
L, x′1 =

w0

w1
x, x′1 =

w0

w1
y

Consequently, the coordinate change is smooth on the initial plane; in other
words, the initial data may be given in the initial coordinates. The procedure
for numerical propagation is therefore the following:

• The initial wave function Ψ0(x, yz) is given, and the propagation step
L is fixed.

• On computes the magnification factor w1/w0 for the propagation step
(this can be estimated by analogy with a gaussian beam).

• One changes of wave function by the formula

F0 = exp
[
−ikr2/2z0

]
Ψ0

where z0 ≡ L/(w1/w0 − 1).

• one chooses the window appropriate for F0, and propagates the field
using the propagator

PL = exp

[
−i (p

2 + q2)∆z′

2k

]

where ∆z′ ≡ w0L/w1.
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• get the propagated wavefunction F1(x
′, y′), and return to the true wave

function by

Ψ1(x
′, y′) =

z0
z0 + L

exp
[
ikr2/2(z0 + L)

]
=
w0

w1
exp

[
ik
r′2(z0 + L)

2z20

]
F1(x

′, y′)

be aware that the transverse coordinates are now rescaled according to
the magnification factor.

It may be very instructive to examine step by step what happens to a
pure TEM00 (an analytic calculation is possible) when treated this way. The
initial wave function is:

Ψ0(x, y) = e−r
2/w2

0

z0 being computed, we obtain the corrected wave function

F0(x, y) = e−r
2/w2

0 e−ikr
2/2z0 = exp

[
− r2

w2
0

(
1 + i

b

z0

)]

where b ≡ πw2
0/λ. The Fourier transform is:

F̃0(p, q) =
λb

1 + ib/z0
exp

[
−w2

0(p
2 + q2)

4(1 + ib/z0)

]

we obtain the propagated wave in the Fourier space by

F̃1 = P (∆z′)× F̃0

where (∆z′ ≡ Lz0/(z0 + L)):

P (∆z′) = exp

[
− i

w2
0(p

2 + q2)∆z′

4b

]

we find, after a reciprocal Fourier transform:

F1(x
′, y′) =

1

1 + i∆z′(1 + ib/z0)/b
exp

[
− r′2

w2
0

b(1 + ib/z0)

b+ i∆z′(1 + ib/z0)

]

the propagated function is thus

Ψ1(x
′, y′) =

z0
z0 + L

1

1 + i∆z′(1 + ib/z0)/b
×



3.1. NUMERICAL PROPAGATION USING FOURIER TRANSFORMS183

× exp

{
− r′2

w2
0

[
b(1 + ib/z0)

b+ i∆z′(1 + ib/z0)
− i

b(z0 + L)

z20

]}

or as well

Ψ1(x
′, y′) =

1

1 + iL/b
exp

[
− r′2

w2
0

w2
1w

2
0

1

1 + iL/b

]

=
w0

w1
exp

[
− i atan(L/b)− r2

w2
1

+ ik
r2

2R

]

with R ≡ L(1+b2/L2), which is the classical result (see a preceding section) of
gaussian optics. It is thus checked that the preceding method gives the same
result as the direct calculation giving directly Ψ1 from Ψ0. This result is not
very interesting by itself, but the detailed calculation allows to understand
how the new algorithm maps a diverging beam onto a collimated one. Let us
examine the nature of the corrected waves F0 and F1 used as intermediary
data. We have firstly

Ψ0 = e−r
2/w2

0

we know from the theory of gaussian beams that

w1 = w0

√
1 + L2/b2 = w0

√
1 + ζ2

(ζ ≡ L/b); consequently,

z0 = L/(
√
1 + ζ2 − 1)

the corrected function is then:

F0 = exp

{
− r2

w2
0

[
1 + i

√
1 + ζ2 − 1

ζ

]}

the propagator may be written as:

P (p, q) = exp

[
− i

w2
0(p

2 + q2)

4

ζ√
1 + ζ2

]

by taking the Fourier transform of F0, multiplying by P and applying a
reciprocal Fourier transform, gives the propagated corrected wave function
as:

F1(x
′, y′) = exp

{
− r′2

w2
0

[
1− i

√
1 + ζ2 − 1

ζ

]}
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where we see that the new wave has the same width w0 and an opposite radius
of curvature. The initial wave has been transformed into a collimated wave
propagating without magnification between z0 and z0 + L. The diverging
behavior of the wave is recovered through the homothetic transformation of
coordinates at the end.

3.1.8 Off-axis propagation

When the incidence angle is not zero, the Fourier transform of the incoming
amplitude may exceed the limits of the Fourier window, although the behav-
ior of the field is quite reasonable. It is possible to suppress this effect simply
by translating the Fourier transform. Assume the incidence angles are (θ, φ)
and set p0 ≡ kθ cos φ, q0 ≡ kθ sinφ. If the incoming amplitude is denoted
by Ψ1(x, y), it is likely that its Fourier trnasform is peaked at (p0, q0) and
possibly out of the Fourier window. Let us define a corrected field by

F1(x, y) = Ψ1(x, y) × e−ip0x e−iq0y

the desired effect follows immediately:

F̃1(p, q) = Ψ̃1(p− p0, q − q0)

showing that the FT has been translated in the Fourier plane to reach a
central position. Now, we can propagate the corrected field over a distance
L. If the propagated field is Ψ2 and the corrected propagated field F2, we
can write:

F̃2(p, q) = exp
[
ikL− i

L

2k
(p2 + q2)

]
Ψ̃1(p− p0, q − q0)

and by taking the reciprocal transform:

F2(x, y) = eikL
1

4π2

∫
dp dq e−iL(p

2+q2)/2k Ψ̃1(p− p0, q − q0)

= eikLe−ip0x−iq0y
1

4π2

∫
dp dq e−iL[(p+p0)

2+(q+q0)2]/2k Ψ̃1(p, q)

= exp

[
ikL

(
1− p20 + q20

2k2

)]
e−ip0x−iq0y e−ikLΨ2(x+ Lp0/k, y + Lq0/k)



3.1. NUMERICAL PROPAGATION USING FOURIER TRANSFORMS185

the factor of exp(−ikL) comes from the fact that our definition of Ψ2 (the
propagated field) implicitly includes a pure propagation phase of exp(ikL).
by returning to the incidence angles, we get

F2(x, y) = eikL(1−θ
2/2) e−ikxθ cos φ e−ikyθ sinφ

[
e−ikL ×Ψ2(x+ θL cosφ, y + θL sinφ)

]

where we have put into evidence the following facts:

• the propagated wave function has been translated, so that the field is
expressed in the new cordinates

x′ = x+ θL cosφ, y′ = y + θL sin φ

so as to follow the angular direction of the beam, and keep the ampli-
tude map at the center of the window,

• the angular direction of the beam is preserved

• the pure propagation phase is

kL(1− θ2/2) instead of kL

this accounts for the removed obliquity that introduces a factor of cos θ
which can be easily corrected if necessary.

The situation is summarized on Fig.3.17
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3.2 Hankel transform methods

The preceding numerical methods were designed to study situations having
no symmetry. In certain cases, we may assume the optical elements and the
optical field itself having the axial symmetry. This happens namely in the
case of thermally induced distortions caused by the beam. We can neglect
the beam’s imperfections, and assume a pure TEM00 mode as the source of
heat, owing to what, almost all distortions will keep axial symmetry. In such
cases, we can take benefit of the symmetry and reduce the computational
demands by specifying explicitly the symmetry in the calculations. In the
case of the Fourier transform approach, this results in the Hankel transform.

3.2.1 Theory

The 2D Fourier Transform of a function f(x, y) is

f̃(p, q) =
∫

R

eipxeiqyf(x, y) dx dy

In order to have polar coordinates both in the direct and in the Fourier
space, we define (r, φ) and (ρ, ψ) by:

x = r cosφ, y = r sin φ

p = ρ cosψ, q = ρ sinψ

the transform is now:

f̃(ρ, ψ) =
∫ 2π

0
dφ

∫ ∞

0
r dr eiρr cos(φ−ψ) f(r, φ)

If the initial function f is axially symmetrical, i.e. independent of φ,
then its transform f̃ is also axially symmetrical in the Fourier space, the φ
integration can be carried out, and we obtain:

f̃(ρ) = 2π
∫ ∞

0
J0(ρr) f(r) r dr

Integrals of this type, involving a Bessel function, are called Hankel trans-
forms. The inverse Fourier transform reads

f̃(r) =
1

2π

∫ ∞

0
J0(ρr) f̃(ρ) ρ dρ
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It is cumbersome to keep these factors of 2π throughout all foregoing
calculations. It is much more convenient to use here a different convention
in the definition of the Fourier Transform:

f̃(p) =
1√
2π

∫ ∞

−∞
eipxf(x) dx (3.14)

In this case, the 2D Fourier transform of f(r) is simply the Hankel trans-
form:

f̃(ρ) =
∫ ∞

0
J0(ρr) f(r) r dr (3.15)

and its inverse is

f(r) =
∫ ∞

0
J0(ρr) f̃(ρ) ρ dρ (3.16)

We are dealing with special physical solutions of the wave equation, i.e.
amplitudes of finite spatial extension (or almost), such as gaussian waves,
which are practically zero for x2 + y2 > 10w2

0, and of finite extension in the
Fourier space (again gaussian waves). There exists a circle of radius a outside
of which the amplitude is negligible, and there exists a circle of radius b in
the Fourier plane outside of which the Fourier transform of the amplitudes is
negligible. It is well known that there exists a family of orthogonal functions
on the disk Da ≡ {r < a}, i.e. the functions

ϕβ(r) = J0(ζβr/a), β = 1, 2, . . . ,∞
where the ζβ, β = 1, 2, · · · ,∞ are the zeros of J1(z). The orthogonality

relation is:

∫ a

0
ϕβ(r) ϕα(r) r dr =

a2

2
J2
0 (ζα) δαβ (3.17)

Let us note

pα =
a2

2
J2
0 (ζα)

Obviously, if Db ≡ {ρ < b} is the disk in the Fourier space, it admits a
corresponding family of functions:

ψβ(ρ) = J0(ζβρ/b), β = 0, 1, . . . ,∞
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with the notation

qα =
b2

2
J2
0 (ζα)

we have the orthogonality relation:

∫ b

0
ψβ(ρ) ψα(ρ) ρ dρ = qα δαβ (3.18)

We call Ba the set of all functions of r negligible outside Da, and Bb the
set of functions of ρ negligible outside Db. We can assume in the formulas of
the Hankel Transform (3.15,3.16), that f̃ ∈ Bb, and expand it on the basis.
Such an expansion is called Dini expansion:

f̃(ρ) =
∞∑

β=0

f ′
βψβ(ρ) =

∞∑

β=0

f ′
β J0(ζβρ/b)

by substituting in (3.16) we get:

f(r) =
∞∑

β=0

f ′
β

∫ ∞

0
J0(ρr) J0(ζβρ/b) ρ dρ

We can sample the values of f(r) by choosing an elementary distance in
the plane. It is convenient to take δr = 1/b as the distance element and
sample the radii according to

rα = ζα/b

so that there is a strong link between the coefficients f ′
β introduced in the

Dini expansion of f̃ and the samples f(rα):

fα ≡ f(rα) =
∞∑

β=0

f ′
β

∫ b

0
J0(ρζα/b) J0(ζβρ/b) ρ dρ

Remark that the transform integral stops to b instead of ∞ because we know
that the function f̃(ρ) is zero outside Db. Owing to the orthogonality relation
gives:

f ′
α =

fα
qα

by substituting in the expansion of f̃ we get:
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f̃(ρ) =
∞∑

β=0

fβ J0(ζβρ/b)

qβ

We can now also sample the values of f̃(ρ) by chosing the elementary
frequency as δρ = 1/a, and the spectrum samples will be evaluated at
ρα = ζα/a. The preceding expression, after sampling becomes:

f̃α ≡ f̃(ρα) =
∞∑

β=0

1

qα
fα J0(ζβζα/ab)

This is the discrete expression of the Hankel Transform, a linear relation
between the vector f̃α and the vector fα:

f̃α =
∞∑

β=0

H
(+)
αβ fβ

The direct transform is thus represented by the matrix

H
(+)
αβ =

2J0(ζαζβ/ab)

b2J2
0 (ζβ)

(3.19)

Obviously, a similar treatment can be carried out for the inverse trans-
form. The previously introduced function f ∈ Da admits a Dini expansion
of the form

f(r) =
∞∑

β=0

f̃ ′
β J0(ζβ r/a)

so that the expression (3.15) of the continuous direct Hankel Transform
becomes:

f̃(ρ) =
∞∑

β=0

f̃ ′
β

∫ a

0
J0(ρr) J0(ζβ r/a) r dr

Now, in the Fourier plane, we can sample the conjugated variable ρ ac-
cording to ρα = ζα/a, so that we have the discrete version:

f̃α ≡ f̃(ρα) =
∞∑

β=0

f̃ ′
β

∫ a

0
J0(ζα r/a)J0(ζβ r/a) r dr

from the orthogonality relation we obtain:
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f̃ ′
α =

f̃α
pα

the Dini expansion of f(r) is now determined, and we have:

f(r) =
∞∑

β=0

1

pβ
f̃β J0(ζβ r/a)

Sampling of the values of f according to rα = ζα/b leads to the inverse
Hankel Transform:

fα =
∞∑

β=0

H
(−)
αβ f̃β

with

H
(−)
αβ =

2J0(ζαζβ/ab)

a2J2
0 (ζβ)

(3.20)

The fact that the studied function f is in the set Ba implies that it takes
negligible values for r > a. The sampling rα can therefore stop at r = a, and
we have:

ζα /b ≤ a ⇒ ζα < ab

The same result is obviously obtained by considering the Fourier space.
If the transformed function f̃ takes negligible values for ρ > b, then the
sampling of ρ must stop at b:

ζα /a ≤ b ⇒ ζα < ab

We can freely decide the size of the computation window a. Then we
can still freely decide the maximum number N of zeros we shall take into
account in the infinite sums encountered in the expressions of the Discrete
Hankel Transformn (DHT). This being done, we have

α = 0, 1, 2, . . . , N

ab = ζN ⇒ b = ζN/a
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The radial sampling is thus:

rα = a ζα/ζN

and the spatial frequency sampling:

ρα = ζα/a

The expressions for the Transforms (FDHT) are finite rank matrix algebra:

f̃α =
N∑

β=0

H
(+)
αβ fβ , α = 0, 1, 2, . . . , N

with H
(±)
αβ having the following definitions:

H
(+)
αβ =

2a2J0(ζαζβ/ζN)

ζ2NJ
2
0 (ζβ)

(3.21)

H
(−)
αβ =

2J0(ζαζβ/ζN)

a2J2
0 (ζβ)

(3.22)

The Hermitian scalar product of two functions f(r) , g(r) is defined in
the direct Hilbert space by

< f , g > =
∫ ∞

0
f(r)∗ g(r) r dr

if moreover, f, g ∈ Da, then the integral can be stopped at r = a and
f , g may be replaced by their Dini expansions on the ϕα, so that, using the
orthogonality,

< f , g > =
∑

α

f̃ ′∗
α g̃

′
α pα

or,
< f , g > =

∑

α

f̃ ∗
α g̃α /pα

The Hermitian scalar product is invariant by a Fourier Transform, so that
we have as well:

< f , g > = < f̃ , g̃ >

it is easily seen that
< f̃ , g̃ > =

∑

α

f ∗
αgα/qα
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these formula provide the way of computing the scalar product either in the
spatial or in the frequency space. The power carried by a given amplitude f
is now

P (f) = < f , f >

and we have a distance in the Hilbert space, defined for two functions f, g by

d(f, g) =
√
P (f − g)

3.2.2 Numerical implementation

If efficient FFT routines are available in all mathematical computer libraries,
this is not the same for DHT, this is the reason why we give here the basic
ideas for building specific libraries. All preceding formulas deal with the two
numerical tables of the zeros of J1 (including 0), ζα and J0(ζα). It is easy
to obtain the table ζα by the following scheme. An initial guess of ζ being
given, a better estimate is found by the Newton formula:

ζnew = ζold − J1(ζold)

J ′
1(ζold)

which can be iterated until a given accuracy is met. Now, using the well
known relation

J ′
1(z) = J0(z) − 1

z
J1(z)

this is

ζnew = ζold

[
1 − J1(ζold)/J0(ζold)

ζold − J1(ζold)/J0(ζold)

]

The problem reduces to the calculation of J1(z)/J0(z). This can be done
using a well known algorithm based on the recursion formula for Bessel func-
tions, namely

Jn(z) =
2(n+ 1)

z
Jn+1 − Jn+2

The recursion begins by taking arbitrarily JM = 0 and JM−1 = 1, and then
descending to J1 and finally J0 by the preceding formula. M must be chosen
sufficiently large depending on the argument. If during the recursion the Jn’s
become to large, leading to a possible overflow, all the terms of the recursion
can be divided by a common arbitrary renormalization constant. Finally, the
ratio of the two last terms gives the value of J1(z)/J0(z). The calculation
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of J0(z) is identical, except that the last term of the recursion gives J0(z)
only after normalization. This normalization is done using the well known
relation

1 = J0(z) + 2
∞∑

n=1

J2n(z)

Finally, the determination of all {ζα ; α = 0, 1, . . . , N} is done by taking
the first ones from any mathematical handbook:

ζ0 = 0 , ζ1 = 3.83 , ζ2 = 7.02

(values already encountered in the diffraction problem for a uniform circular
aperture) as initial guesses for initializing the Newton refinement process.
Then for all higher indices, the initial guess for ζα is ζα−1+π. One can easily
imagine routines providing at the same time the two families ζα and J0(ζα).

The question ”is the inverse HT actually the algebraic inverse of the direct
HT ?” must be considered, because it is not manifest that

N∑

σ=0

H(±)
ασ H

(∓)
σβ = δαβ (?)

In fact this is not true. What is true is that the linear operatorH(−) H(+) is a
projector on Ba , andH

(+) H(−) a projector on Bb, for N infinite. Practically,
this means that for a given function f negligible outside Da, and for N large
enough, we have

fα ≃
N∑

β=0

N∑

σ=0

H(−)
ασ H

(+)
σβ fβ

and the corresponding formula in the Fourier space, with an accuracy de-
pending on the window size a and the rank N . To be more specific, it is
possible to reach the limit accuracy of the computer (≃ 10−15) in double ,
or REAL*8 , by suitably chosing the window a. We conclude that the sit-
uation is theoretically different from the 2D DFT, in which the product
DFT−1 × DFT is exactly the unity operator, regardless of the rank of the
transform or the window size, but practically, the window being correctly
chosen, the numerical accuracy is the same. If we consider a gaussian wave
at its waist (w0 = 2 cm) and compare it with its double DHT, we obtain the
following results:
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Sample size Optimal window rms error
10 8 cm 5.2 10−7

20 11 cm 1.8 10−13

50 17 cm 1.0 10−15

Thus, with N about 50 , there is no significant numerical discrepancy between
the DFT and the DHT

The correspondance between an initial field distribution e0(r) and the field
ez(r) diffracted at a distance z is represented by a matrix that can be com-
puted explicitly. The paraxial propagator, as seen previously, is expressed in
the Fourier variables p , q, by

G̃(p, q, z) = exp
[
− i

z

2k

(
p2 + q2

)]

with ρ2 = p2 + q2, and using the sampling ρα = ζα/a, we have

G̃α = exp

[
− i

λz

4πa2
ζ2α

]

The Fourier tranform of the initial field is:

ẽ1,α =
N∑

β=0

H
(+)
αβ e1,β

The Fourier Transform of the final field is

ẽ2,α = G̃α × ẽ1,α

And the final field itself is

e2,α =
N∑

β=0

H
(−)
αβ ẽ2,β

All this can be summarized by the simple linear operation

e2,α =
N∑

β=0

Pαβ e1,α (3.23)

Where the matrix P is:
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Pαβ =
N∑

σ=0

H(−)
ασ G̃σ H

(+)
σβ (3.24)

In order to compare with the 2D DFT, we do the same numerical exper-
iment, and we propagate a normalised TEM00 from its waist (w0 = 2cm)
over a distance z = 3km. We compare in the following table the numerically
propagated wave with the theoretical.

Sample size Optimal window rms error
10 13 cm 6.3 10−3

20 18 cm 3.1 10−5

50 29 cm 9.5 10−13

100 40 cm 1.8 10−15

The intensity of the field can be represented on a radial plot (see Fig.3.18).
The sampling has been represented by small spots. The red profile corre-
sponds to the initial gaussian wave, the blue to the diffracted one.
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Figure 3.18: Diffraction of a gaussian wave, N=50 samples, window = 30
cm. dots: HT samples, solid line: diffraction theory
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The difference between a numerically propagated mode and its exact value
is represented on Fig.3.19, the same experiment as reported on the previous
Fig.3.4:
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Figure 3.19: Interference fringe between a numerically propagated TEM00

and its exact value
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The optical system being assumed axially symmetrical, the mirror sur-
faces are sampled along a radius. A mirror will be defined by the diagonal
operator

Mα = i rP exp

[
i k

aζ2α
2Rc ζ

2
N

+ i k f(aζα/ζN)

]

where rP is the photometric reflection coefficient, and Rc the curvature ra-
dius. The function f(r) represents possible geometrical defects of the mirror.
Action on an optical amplitude, giving Aref from Ain is:

Aref,α = MαAin,α

It follows that to any optical system involving distances and mirrors (or
thin lenses) can be associated a single matrix which represents explicitly the
optical transfer function. An example is treated below.

Finding the field stored in a resonant cavity is especially convenient in
the DHT scheme because it can be done by one matrix inversion. Recall
that if the input amplitude is A, the intracavity field B obeys the implicit
equation

B = t1 A + r1r2 eiφ [ M1 P M2 P ]B

where the phase φ determines the tuning of the cavity, and P is the diffraction
operator described above. Calling C = M1 P M2 P the cavity operator,
representing the effect of a round trip, we see from the preceding subsection
that C is an explicitly known matrix. The solution of the preceding equation
can therefore be found as

B =
[
I − r1r2e

iφC
]−1

t1A

where I is the identity matrix. Instead of a series of iterations, as in the DFT
scheme, we may now solve the problem by a single N ×N matrix inversion.
In case of moderate finesse (r1r2 not too close to 1), this is a huge benefit.
If the finesse is high, the iteration scheme in the FFT method converges
very slowly, but the matrix inversion may become problematic too, due to
the very small diagonal elements. An idea of the accuracy of the algorithm
can be drawn from the following experiment: We consider a resonant cavity
of finesse 50, tuned on the fundamental mode, and we check the relative
accuracy on the solution of the implicit cavity equation, i.e:

ǫ = ‖ B − t1A+ r1r2e
iφC ‖
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Sample size Optimal window rms error
20 17 cm 4.8 10−5

50 29 cm 1.7 10−12

100 39 cm 3.0 10−15

For the reflected field, we have

Aref = M †
1 A + t1 B

so that the reflection off the cavity reduces to a matrix product:

Aref =
[
M †

1 + t1
(
I − r1r2e

iφC
)
t1
]−1

A
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3.3 Modal expansion

The principle of a modal expansion is to expand the optical amplitudes on a
discrete basis of functions having a known behavior in diffracting. Examples
of such functions have been already presented as the Hermite-Gauss (HG)
functions and the Laguerre-Gauss (LG) functions respectively. A perfect
beam in a perfect cavity would be precisely a HG00 or a LG00 as well. This
suggests that in case of very small perturbations of the system, the actual
amplitudes could be described with a small number of HG or LG functions,
saving much computational power. A general numerical approach of small
perturbations must involve small displacements, including rotations, of the
mirrors. In this case, the HG functions are highly recommended, as will be
seen, and consequently, will be kept for other perturbations having the axial
symmetry, even if this increases the complexity. The ideal field of application
of modal expansion is the simulation of the small motions of mirrors in any
degree of freedom.

3.3.1 Return to the HG family of modes

The set of Hermite-Gauss functions {HGmn(x, y), m, n = 0, 1, . . . ,∞} is a
complete set. Thus any optical amplitude admits a unique expansion of the
type

E(x, y) =
∑

m,n

Emn HGz;m,n(x, y)

This kind of representation has the key advantage that, dealing with its
eigenfunctions, the propagation operator has a diagonal matrix representa-
tion. In fact, in a perfect system where all mirrors are matched, the prop-
agation problem completely decouples in independent scalar equations, one
for each mode. linear coupling of these modes are caused by perturbations
of the optical elements. In all what follows, we take the normalized HGm,n

functions as the basis. This means that at all optical element, there is a basis
of functions

φz;m,n(x, y) = cmnHm

(√
2x/w(z)

)
Hn

(√
2y/w(z)

)
×

× exp

[
− x2 + y2

w(z)2

]
exp

[
i
π(x2 + y2)

λR(z)

]
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having a w(z) parameter equal to what diffraction imposes. The normalisa-
tion constant is:

cmn =

√
2

πw(z)2
1

2m+nm!n!

In other words, we have one Hilbert space per element, and all these Hilbert
spaces are connected by the coordinate z. For instance, at the waist, we have
the basis φw0;m,n(x, y), and at the end mirror, at a distance z = L, the basis

φw1;m,n(x, y), where w1 = w0

√
1 + L2/b2

The optical elements we shall consider as examples are weak curvature
matched mirrors having defects or wrong location. In general, the effect of
such a mirror on an incoming wave Emn, in will be represented by a matrix
operation

Emn,out = ir
∑

k,l

Rmn,klEkl,in

where r is the photometric coefficient, and where the coefficients Rmn,kl are
given by

Rmn,kl = cmnckl

∫

R2

Hm

(√
2
x

w

)
Hn

(√
2
y

w

)
×

Hk

(√
2
x

w

)
Hl

(√
2
y

w

)
exp

(
−2

x2 + y2

w2

)
exp (2ikf(x, y)) dx dy

The total curvature phase factor vanishes, because if we represent the incom-
ing wave’s by eiφ, the matched mirror is e−2iφ, and the reflected wave e−iφ.
Then we take the scalar product of this wave with the inversely directed
wave which contains e−iφ, and eventually, φ disappears. The function f(x, y)
represents consequently only the departure of the surface with respect to the
ideal paraboloid. We take the opportunity to remark that in kilometric FP
cavities, curved mirrors can be considered as well as spherical or parabolic.
The apex equation of a sphere of radius Rc osculating the plane z = 0 is:

z = Rc −
√
R2
c − x2 − y2

The expansion for large Rc gives

z =
x2 + y2

2R2
c

− (x2 + y2)
2

8R3
c

+O(a6/R5
c)
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(a being the radius of the mirror). The first term is the parabolic approxi-
mation, and the second is bounded by

δzmax =
a4

8R3
c

For typical values, a = 17.5 cm, and Rc = 3.45 km, we have δzmax ≃
3. × 10−15m, so that there is no significant difference between the paraboloid
and the sphere. The scalar product can be written

Rmn,kl =
w2

2
cmnckl

∫

R2

Hm (X)Hn (Y )Hk (X)Hl (Y ) × (3.25)

exp(−X2) exp(−Y 2) exp
(
2ikf(wX/

√
2, wY/

√
2)
)
dx dy

3.3.2 Tilted mirrors

The first case we shall examine is the rotation of a mirror. Obviously we
consider small rotation angles. The general apex equation of a parabolic
mirror, as already said, is, in the X, Y, Z coordinates

Z =
X2 + Y 2

2Rc

Suppose that the X, Y, Z frame is rotated by an azimutal angle φ and a
colatitude angle θ from the reference frame x, y, z. We need the apex equation
in that reference frame. We have

X = x cos θ cosφ + y cos θ sin φ − z sin θ

Y = − x sinφ + y cosφ

Z = x sin θ cosφ + y sin θ sinφ + z cos θ

By substituting in the apex equation, we get a second order equation in z,
whose solution is

z =
x2 + y2

2Rc cos θ
− u tan θ +

u2 sin2 θ

2Rc cos θ
+ O(1/R2

c)

where we have set
u = x cosφ+ y sinφ
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Consider now orders of magnitude. A sophisticated numerical model is useful
if the mirrors are aligned enough to allow some interference in the system. If
not, geometrical optics models are quite sufficient to describe what happens
to the light. If the waves interfere, it means that the rotation angles allow
some light off a mirror to reach the opposite one. In other words, the colat-
itude angle θ is less than θmax = a/L where a is the radius of the mirror.
This is less than 10−4 Rd. With 3.45 km curvature we see that the neglected
terms were less than 10−21 m. Now, x and y being at most of order w, the
third kept term is less than 10−14 m. It is therefore possible to take, with a
very good accuracy, neglecting lengths of order w2θ2/Rc :

z =
x2 + y2

2Rc
− tan θ (x cosφ+ y sin φ)

as the rotated-mirror apex equation. It means that the function f(x, y)
introduced above is simply

f(x, y) = − tan θ (x cosφ+ y sinφ)

In order to compute the rotation matrix, we have to calculate integrals of
the form

Imk(p) =
∫ ∞

−∞
Hm(X)Hk(X) e−X

2

eipX dx (3.26)

with either p = −
√
2kw tan θ cosφ or p = −

√
2kw tan θ sin φ. It is easy

to compute the integral 3.26 by using the translation formula 2.45. We can
write indeed:

Imk(p) = e−p
2/4

∫ ∞

−∞
e−(X−ip/2)2Hm(X)Hk(X) dX

By considering a closed loop in the complex plane and using the Cauchy
theorem, it can be immediately seen that

Imk(p) = e−p
2/4

∫ ∞

−∞
e−X

2

Hm(X + ip/2)Hk(X + ip/2) dX

now, with the translation formula this is

Imk(p) = e−p
2/4

m∑

s=0

k∑

t=0

Cs
mC

t
k (ip)

m−s+k−t
∫ ∞

−∞
e−X

2

Hs(X)Ht(X) dX
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and with the orthogonality relation of the Hermite polynomials, this gives

Imk(p) = e−p
2/4

m∑

s=0

k∑

t=0

Cs
mC

t
k (ip)

m−s+k−t√π2ss!δst

or, finally

Imk(p) =
√
π im+k e−p

2/4
min(m,k)∑

s=0

(−2)s
m! k!

s! (m− s)! (k − s)!
pm+n−2k

the same result can be found by using formula 2.47 and 2.49. It is thus
natural to introduce the displacement polynomials

Qmk(x) =
min(m,k)∑

s=0

(−2)s
m! k!

s! (m− s)! (k − s)!
xm+k−2s (3.27)

so that our result can be expressed as:

Imk(p) =
√
π im+k e−p

2/4Qmk(p) (3.28)

The rotation matrix takes on the form

Rmn,kl(θ, φ) =
im+n+k+l

√
2m+n+k+lm!n!k!l!

× (3.29)

Qmk

(
−
√
2kw tan θ cosφ

)
Qnl

(
−
√
2kw tan θ sinφ

)
e−k

2w2 tan θ2/2

Some more details on displacement polynomials will be discussed in a follow-
ing section. Remark that

kθw

2
=

θ

θg

w

w0

where θg = λ/πw0 is the divergence of the gaussian beam.

3.3.3 Parallel translations of the beam

Consider now a parallel displacement of the beam in a region of null curva-
ture. The incoming beam was

Ein =
∑

mn

Emnφmn(x, y)
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and the translation operator T acts as

T.Ein = Ein(x+∆x, y +∆y)

The matrix elements of the operator are:

Tmn,kl =
w2

2
cmnckl ×

×
∫ ∞

−∞
dX

∫ ∞

∞
dY exp

[
−(X +∆X)2 + (Y +∆Y )2

2

]
exp

[
−X

2 + Y 2

2

]
×

Hm(X)Hn(Y )Hk(X +∆X)Hl(Y +∆Y )

with ∆X ≡
√
2∆x/w. A change of variables leads to

Tmn,kl =
w2

2
cmnckl

∫ ∞

−∞
dX

∫ ∞

−∞
dY exp

[
−(X +∆X/2)2 + (Y +∆Y/2)2

2

]
×

exp

[
−(X −∆X/2)2 + (Y −∆Y/2)2

2

]
×

Hm(X −∆X/2)Hn(Y −∆Y/2)Hk(X +∆X/2)Hl(Y +∆Y/2)

By using again the translation formula, we get successively

Tmn,kl =
w2

2
cmnckl (−1)k+l π Qmk(∆X)Qnl(∆Y ) exp

[
−∆X2 +∆Y 2

4

]

then

Tmn,kl =
(−1)k+l√

2m+n+k+lm!n!k!l!
Qmk(

√
2∆x/w)Qnl(

√
2∆y/w)× (3.30)

exp

[
−∆x2 +∆y2

2w2

]
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3.3.4 Mismatching

When the wavefront incoming on a mirror of curvature radius Rc has curva-
ture radius R, if R 6= Rc there is mismatching. This may happen for instance
if the mirror has been displaced along the optical axis. Assume for instance
the reference beam is a TEMmn HG-mode:

ϕmn(x, y) = cmne
ikr2/2R e−r

2/w2

Hm(
√
2x/w)Hn(

√
2y/w)

where the cmn are the normalization constants. The mirror operator is:

M(x, y) = e−ikr
2/Rc

so that the mirror’s matrix elements being defined as

Mmnkl = 〈ϕ∗
kl,Mϕmn〉

where ϕ∗
kl is the phase-conjugate of ϕkl, we get

Mmnkl = cmnckl

∫ ∞

−∞
e−2r2/w2

eikr
2/Re−ikr

2/Rc×

× Hm(
√
2x/w)Hn(

√
2y/w) Hk(

√
2x/w)Hl(

√
2y/w) dx dy

or

Mmnkl =
πw2

2
cmnckl Im,k(α) In,l(α)

where we have set

α ≡ πw2

λ

[
1

R′ −
1

R

]

and introduced the following integrals:

Im,k(α) =
1√
π

∫ ∞

−∞
e−(1+iα)x2Hm(x) Hk(x) dx

First of all, it is clear that the Im,k are non zero only if m and k have the
same parity. By using the reduction formula (2.47), we get for instance

H2m(x)H2k(x) =
min[2m,2k]∑

s=0

2m!2k!2s

(2m− s)!(2k − s)!s!
H2m+2k−2s(x)
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moreover, one can show from the scaling formula (2.46) and the Cauchy
theorem on a trivial path in the complex plane that, for any complex number
Z of positive real part:

∫

R
e−Zx

2

H2n(x) dx =
2n!

n!
Z−1/2(1/Z − 1)n

we have thus the following result:

I2m,2k = Z−1/2µmk(1/Z − 1)

where Z ≡ 1 + iα, and µmk(x) is a even-matching polynomial defined as:

µmk(x) =
min[2m,2k]∑

s=0

2m!2k!2s(2m+ 2k − 2s)!

(2m− s)!(2k − s)!(m+ k − s)!s!
xm+k−s

The same calculation can be done for the odd-odd integral:

I2m−1,2k−1 = Z−3/2νmk(1/Z − 1)

which defines the odd-matching polynomial

νmk(x) =
1

1 + x

min[2m−1,2k−1]∑

s=0

(2m− 1)!(2k − 1)!2s(2m+ 2k − 2s− 2)!

(2m− 1− s)!(2k − 1− s)!(m+ k − s− 1)!s!
xm+k−s−1

the factor 1/(1 + x) comes from the fact that the preceding sum happens
to be divisible by 1 + x. These two explicit formulas allow in principle to
compute any matrix element, but are not optimal for an efficient numerical
computation. It is better to know the first orders and find higher orders
by recurrence. The well-known recurrence formula for Hermite polynomials
induces the following recurrence scheme:

µm,k(x) = 2(2m− 1)xµm−1,k(x) + 4k(x+ 1)2νm,k(x)

νm,k(x) = 4(m− 1)xνm−1,k(x) + 2(2k − 1)µm−1,k−1

This crossed recurrence scheme can be initiated for instance from the follow-
ing explicitly known matching polynomials, for n ≥ 0:

µ0,n(x) =
2n!

n!
xn
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µ1,n(x) = 2xn−1 2n!

n!

[
(2n+ 1)x2 + 4nx+ 2n

]

µ2,n(x) = 4xn−22n!

n!

[
(2n+ 3)(2n+ 1)x4 + 8n(2n+ 1)x3 + 12n(2n− 1)x2+

+16n(n− 1)x+ 4n(n− 1)]

and for n ≥ 1:

ν1,n(x) =
2n!

n!
xn−1

ν2,n(x) = 2xn−22n!

n!

[
(2n+ 1)x2 + 4(n− 1)x+ 2(n− 1)

]

ν3,n = 4xn−3 2n!

n!

[
(2n+ 3)(2n+ 1)x4 + 8(n− 1)(2n+ 1)x3 + 4(n− 1)(6n− 7)x2+

+16(n− 1)(n− 2)x+ 4(n− 1)(n− 2)]

the symmetry breaking between the two indices is only apparent. The matrix
elements have the following expressions:

M2m,2n,2k,2l(α) =
1

1 + iα

µmk(z)µnl(z)√
22m+2n+2k+2l2m!2n!2k!2l!

where z ≡ −iα/(1 + iα), and

M2m−1,2n,2k−1,2l(α) =
1

(1 + iα)2
νmk(z)µnl(z)√

22m+2n+2k+2l−2(2m− 1)!2n!(2k − 1)!2l!

M2m,2n−1,2k,2l−1(α) =
1

(1 + iα)2
µmk(z)νnl(z)√

22m+2n+2k+2l−22m!(2n− 1)!2k!(2l − 1)!

M2m−1,2n−1,2k−1,2l−1(α) =
1

(1 + iα)3
νmk(z)νnl(z)√

22m+2n+2k+2l−4(2m− 1)!(2n− 1)!(2k − 1)!(2l − 1)!

Some examples for the first orders of self-coupling:

M00,00(α) =
1

1 + iα

M01,01(α) =
1

(1 + iα)2

M02,02(α) =
1

1 + iα
(1 + 2z + 3z2/2)
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M11,11(α) =
1

(1 + iα)3

for coupling of 00 to higher orders:

M00,2m,2n(α) =
1

1 + iα

√
2m!2n!

2m+nm!n!
zm+n

for coupling of 01 to higher orders (n ≥ 1):

M01,2m,2n−1(α) =
1

(1 + iα)2

√
2m!2n!

2m+nm!n!

√
2n zm+n−1

3.3.5 Clipped mirrors

Real mirrors are of finite size. The ideal TEM00 beam is, strictly speaking,
of indefinite transversal extension, but it is so sharply peaked that, in prac-
tice, mirrors having radii about 2.5 times the half-width of the beam can
be considered almost indefinite, which exactly means that ”one can neglect
the diffraction losses”. It is interesting to quantify these losses in terms of
power coupled in higher order modes. The finite sizing of an otherwise per-
fectly matched mirror can be considered as a perturbation, and we address
the question of computing the matrix elements of that perturbation in the
Hermite-Gauss basis. If we denote by φm,n(x, y) the elements of the basis,
the matrix elements have the form

Γm,n,k,l = 〈φm,n,Mφk,l〉

M being the mirror operator. Due to the perfect matching of the mirror
curvature radius, this scalar product reduces to

Γm,n,k,l = cmnckl

∫ 2π

0
dφ

∫ a

0
r dr e−2r2/w2

Hm(
√
2r cosφ/w)Hn(

√
2r sinφ/w)×

× Hk(
√
2r cosφ/w)Hl(

√
2r sinφ/w)

where a is the finite radius of the mirror. When a → ∞, we expect the
bracket to vanish unless m = k, n = l, due to the orthogonality of the basis.
After a change of variables, the integral becomes

Γm,n,k,l = c′mnc
′
kl 2

∫ ρ

0
e−R

2

RdR
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× 1

2π

∫ 2π

0
dφHm(R cos φ)Hn(R sin φ)Hk(R cosφ)Hl(R sinφ)

where ρ ≡
√
2a/w. The new normalization constants are

c′mn =
1√

2m+nm!n!

It is convenient to take a shorthand notation

[m,n, k, l](φ) = 2
∫ ρ

0
e−R

2

RdRHm(R cosφ)Hn(R sinφ)Hk(R cosφ)Hl(R sinφ)

for the radial integral. For the angular average, we take the abbreviation

(f) ≡ 1

2π

∫ 2π

0
dφ f(φ)

so that the matrix element is

Γm,n,k,l = 〈mn|M |kl〉 = c′mnc
′
kl ([m,n, k, l])

From the definition of the Hermite polynomials we get immediately:

Hm(R cosφ) =
[m/2]∑

s=0

(−1)s
m!

s! (m− 2s)!
(2R)m−2s (cosφ)m−2s (3.31)

and obviously:

Hm(R sinφ) =
[m/2]∑

s=0

(−1)s
m!

s! (m− 2s)!
(2R)m−2s (sinφ)m−2s (3.32)

It is however clear that averaging over angles will eliminate a number of
terms, we have in particular:

(cos2n+1 φ) = (sin2n+1 φ) = 0

moreover,

(cos2n φ sin2m φ) =
2m! 2n!

22m+2nm!n! (m+ n)!
(3.33)

so that we see immediately that the only nonzero elements are:

Γ2m,2n,2k,2l, Γ2m,2n+1,2k,2l+1, Γ2m+1,2n,2k+1,2l, Γ2m+1,2n+1,2k+1,2l+1
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It is straightforward to derive from the recurrence relation obeyed by the
Hermite polynomials, the following:

[m,n, k, l] = [m,n−1, k, l+1]+2l [m,n−1, k, l−1]−2(n−1) [m,n−2, k, l]
(3.34)

[m,n, k, l] = [m−1, n, k+1, l]+2k [m−1, n, k−1, l]−2(m−1) [m−2, n, k, l]
(3.35)

allowing to compute any matrix element, once some initial elements are
known. The point is that a whole family of elements can be computed ex-
plicitly. We firstly have:

2
∫ ρ

0
e−R

2

R2n+1 dR = n!

[
1− e−ρ

2
n∑

s=0

ρ2s

s!

]

so that in particular, we have simply:

([0, 0, 0, 0]) = 1− e−ρ
2

(3.36)

then, by using the definitions (3.31,3.32), formula (3.33) and some algebra,
it is possible to show that, for k+ l 6= 0 (the special case k+ l = 0 is known):

([0, 0, 2k, 2l]) = (−1)k+l
2k! 2l!

k! l! (k + l)!
ρ2e−ρ

2

Ck+l−1(ρ
2) (3.37)

where the Cm(x) are the clipping polynomials defined by

Cm(x) =
m∑

s=0

(−1)s Cs
m

(m+ 1)!

(s+ 1)!
xs (3.38)

The first clipping polynomials are as follows:

C0(x) = 1

C1(x) = 2− x

C2(x) = 6− 6x+ x2

C3(x) = 24− 36x+ 12x2 − x3

C4(x) = 120− 240x+ 120x2 − 20x3 + x4
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Moreover, with (3.34):

([0, 1, 2k, 2l−1]) = (−1)k+l
2k! 2l!

k! l! (k + l)!
ρ2e−ρ

2
[
Ck+l−1(ρ

2)− (k + l)Ck+l−2(ρ
2)
]

(3.39)
One can introduce the family C(1)

m (x) ≡ Cm(x)− (m+1)Cm−1(x), and show
that

C(1)
m (x) =

x

m

d

dx
Cm(x) (m > 1)

or

C(1)
m (x) = −x

m−1∑

s=0

(−1)sCs
m−1

(m+ 1)!

(s+ 2)!
xs

so that

([0, 1, 2k, 2l− 1]) = (−1)k+l
2k! 2l!

k! l! (k + l)!
ρ2e−ρ

2

C
(1)
k+l−1(ρ

2)

These two results, added to the recurrence relations and to the symmetry in
the pairs (m, k) and (n, l), allow to recursively compute any matrix element.
We have namely:

Γm,n,k,l =

√
l + 1

n
Γm,n−1,k,l+1 +

√
l

n
Γm,n−1,k,l−1 −

√
n− 1

n
Γm,n−2,k,l

Γm,n,k,l =

√
k + 1

m
Γm−1,n,k+1,l +

√
k

m
Γm−1,n,k−1,l −

√
m− 1

m
Γm−2,n,k,l

The clipping polynomials are orthogonal in the following sense:

∫ ∞

0
e−xCm(x)Cn(x) x dx = δmnn! (n+ 1)!

Result (3.37) allows already to study the coupling of the TEM00 with
higher order modes. The complete expression of the coupling coefficient is
(c′00 = 1):

Γ0,0,0,0 = 1− e−ρ
2

Γ0,0,2k,2l = c′2k,2l ([0, 0, 2k, 2l]) (k + l 6= 0)

or

Γ0,0,2k,2l =
(−1)k+l

√
2k! 2l!

2k+lk! l!(k + l)!
ρ2 e−ρ

2

Ck+l−1(ρ
2) (k + l 6= 0)
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(recall that ρ2 ≡ 2a2/w2). In Fig.3.20, one can see the dependence on a
of the coupling factor (power). We see that for small values of a, there is
a huge loss of power, and thus the coupling is weak, then it increases and
finally returns to zero when a is large, due to orthogonality of the modes.
The explicit values for the first matrix elements expressing the coupling of
the TEM00 are:

Γ0,0,0,2 = −
√
2

2
ρ2 e−ρ

2

Γ0,0,0,4 =

√
3

2
√
2
ρ2 e−ρ

2

(1− ρ2/2)

Γ0,0,0,6 = −
√
5

4
ρ2 e−ρ

2

(1− ρ2 + ρ4/6)

Γ0,0,0,8 =

√
35

8
√
2
ρ2 e−ρ

2

(1− 3ρ2/2 + ρ4/2− ρ6/24)

Γ0,0,2,2 =
1

2
ρ2 e−ρ

2

(1− ρ2/2)

Γ0,0,2,4 = −
√
3

4
ρ2 e−ρ

2

(1− ρ2 + ρ4/6)

Γ0,0,2,6 =

√
5

4
√
2
ρ2 e−ρ

2

(1− 3ρ2/2 + ρ4/2− ρ6/24)

Γ0,0,4,4 =
3

8
ρ2 e−ρ

2

(1− 3ρ2/2 + ρ4/2− ρ6/24)

Γ0,0,4,6 = −
√
30

16
ρ2 e−ρ

2

(1− 2ρ2 + ρ4 − ρ6/6 + ρ8/120)

In order to initiate any recursive scheme, we need the coupling factors for
the TEM01 mode (k > 0, l > 1):

Γ0,1,2k,2l−1 =
(−1)k+l

√
2k! (2l − 1)!

2k+l−1k! (l − 1)!(k + l)!
ρ2 e−ρ

2
[
Ck+l−1(ρ

2)− (k + l)Ck+l−2(ρ
2)
]

And for autocoupling of higher order modes, we get for instance:

Γ0,1,0,1 = 1− e−ρ
2

(1 + ρ2)

Γ0,2,0,2 = 1− e−ρ
2

(1 + ρ2/2− 3ρ4/2)

Γ1,1,1,1 = 1− e−ρ
2

(1 + ρ2 + ρ4/2)
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Figure 3.20: Relative power coupled from the TEM00 into the first higher
order modes vs. radius of the diaphragm
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Figure 3.21: Relative power coupled from the TEM00 into the first higher
order modes vs. radius of the diaphragm

For realistic values of a/w, a logarithmic scale is preferrable (Fig.3.21):
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It may be also interesting to see how the incident power is ditributed in
the coupled modes by seeing the cumulated coupling coefficients.

P (n) =
n∑

s=0

s∑

k=0

Γ2
0,0,2s−2k,2k

In (Fig.3.22), we show the case of a small diaphragm aperture: the con-
vergence is very slow, because the intense perturbation spread the incident
power among almost more all the modes. In Fig.3.23, we have the cases of
realistic values of w/a, and we have plotted 1− P (n).
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Figure 3.22: Cumulated relative power coupled from the TEM00 into the first
modes vs. maximum order
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Figure 3.23: Residual relative power coupled from the TEM00 into the higher
order modes vs. minimum order
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3.3.6 Offset and clipping

We consider the case where the beam being translated by δ from the optical
axis, it is then clipped by a mirror. For instance, the recycling mirror having
a radius of order 5 cm, one may worry about a possible angular displacement
of the beam making it interacting with the edges. We assume without loss
of generality a displacement along the x direction. The power transmission
factor is:

Γ =
2

πw2

∫

C(a)
exp

[
−2

(x− δ)2 + y2

w2

]
dx dy

where C(a) is the area delimited by the circle of radius a representing the
mirror’s edge. This is

Γ =
1

π
e−2δ2/w2

∫ 2π

0
dφ

∫ √
2a/w

0
ρ dρ e−ρ

2+2ρδ cosφ

or

Γ = 2e−2δ2/w2
∫ √

2a/w

0
ρ dρ e−ρ

2

I0(2
√
2ρδ/w)

where I0 is the modified Bessel function of the 1st kind. The preceding
integral can be numerically computed for arbitrary δ, but if we assume a
displacement small compared to w we can replace I0 by its Taylor expansion
up to 2d order:

I0(z) ∼ 1 + z2/4

so that

Γ = 2e−2δ2/w2

[∫ √
2a/w

0
ρ dρ e−ρ

2

+
2δ2

w2

∫ √
2a/w

0
ρ3 dρ e−ρ

2

]

= e−2δ2/w2

[
1− e−2a2/w2

+
2δ2

w2

(
1− (1 + 2a2/w2),e

−2a2/w2
)]

= 1− e−2a2/w2 − 2a2

w2

2δ2

w2
e−2a2/w2

+ O(δ4/w4)

If the offset δ is a random process δ(t), we see that it induces a power noise:

∆P (t)

P0

= γ
2δ(t)2

w2

with the scaling factor

γ =
2a2

w2
e−2a2/w2

For a recycling mirror of radius 5 cm, we have a/w ∼ 2.5, so that γ ∼ 5×10−5
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3.3.7 Mismatched beams

The first case of mismatching occurs when for instance a beam ψ of the
TEM00 type of waist w1 enters a cavity having a system of eigenmodes of
waist w2. We assume the waist precisely on the input flat mirror. We have
thus to expand the incoming beam on the basis of the HG functions of pa-
rameter w2. This is done by computing the matrix elements:

Γm,n = 〈ψ, φm,n〉

where the φm,n are the eigen HG functions:

φm,n(x, y) =

√
2

πw2
2

√
1

2m+nm!n!
exp

[
−x

2 + y2

w2
2

]
Hm(

√
2x/w2)Hn(

√
2 y/w2)

The scalar product is thus reducible to

Γm,n =

√
2

πw2
1

√
2

πw2
2

√
1

2m+nm!n!
×

×
∫

exp

[
− r2

w2
2

(
1 +

w2
2

w2
1

)]
Hm(

√
2x/w2)Hn(

√
2 y/w2) dx dy

we are in the case of formula 2.48 giving a Fourier transform, in the special
case p = q = 0, which yields a non zero result only for even orders both in
m and in n. For even orders, we get

Γ2m,2n =

√
2

πw2
1

√
2

πw2
2

√
1

2m+nm!n!
×

× πw2
2

1 + w2
2/w

2
1

[
−1

(1 + w2
2/w

2
1)

2

]m+n

(1− w4
2/w

4
1)
m+n (−1)m

2m!

m!
(−1)n

2n!

n!

so that, at the end,

Γ2m,2n =

√
2m! 2n!

2m2nm!n!

2w1w2

w2
1 + w2

2

[
w2

1 − w2
2

w2
1 + w2

2

]m+n

The arithmetic factor (under the square root) has a very low decreasing
rate, as m,n grow, so that if w1 and w2 are very different, the coupling
coefficients are very small and very slowly decreasing with the order (as could
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be foreseen). Note that w1 = w2 yields Γ2m,2n = 0 for m,n 6= 0, and Γ0,0 = 1.
It is easy to check that the total power is conserved, for the arithmetic factors
can be recognized as those in the Taylor expansion of (1− x2)−1/2. In fact:

(1− x2)−1/2 =
∑

k

2k!

22kk!2
x2k (|x| < 1)

so that,

∑

m,n

2m! 2n!

22m+2nm!2 n!2

[
w2

1 − w2
2

w2
1 + w2

2

]2m+2n

=


∑

m

2m!

22mm!2

[
w2

1 − w2
2

w2
1 + w2

2

]2m

2

=
(w2

1 + w2
2)

2

4w2
1w

2
2

and thus ∑

m,n

|Γ2m,2n|2 = 1

Now, if the input amplitude and the TEMmn basis are not taken at the waist,
the formula for coupling the TEM00 mode of parameters (w1, R1) with the
TEMmn mode of parameters (w2, R2) is simply:

Γ2m,2n =

√
2m! 2n!

2m2nm!n!

2w1w2

w2
1 + w2

2 − ik
2
w2

1w
2
2(1/R1 − 1/R2)

×
[
w2

1 − w2
2 + ik

2
w2

1w
2
2(1/R1 − 1/R2)

w2
1 + w2

2 − ik
2
w2

1w
2
2(1/R1 − 1/R2)

]m+n

(with k ≡ 2π/λ).

3.3.8 Coupling of astigmatic beams

Consider an astigmatic normalized optical amplitude of the following type:

A(x, y) =

√
2

πw1w2
exp

[
− x2

w2
1

− y2

w2
2

]

The wavefront is assumed flat at z = 0. After diffraction over a distance L,
the amplitude becomes, up to uniform phases (propagation+Gouy):

B(x, y) =

√
2

πW1W2
exp

[
− x2

W 2
1

− y2

W 2
2

]
exp

[
−i π

λR1
x2 − i

π

λR2
y2
]
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where W1, W2 on one hand, et R1, R2 on the other, are derived from w1, w2

and from the distance L through the ordinary gaussian formulas:

W1 = w1

√
1 +

L2

b21

W2 = w2

√
1 +

L2

b22

R1 = L

[
1 +

b21
L2

]

R2 = L

[
1 +

b22
L2

]

b1, b2 are the two Rayleigh parameters corresponding to the two astigmatism
directions:

b1 ≡ πw2
1/λ, b2 ≡ πw2

2/λ

Suppose now a TEM00 mode:

φ(x, y) =

√
2

πw2
0

exp

[
−x

2 + y2

w2
0

]

Let us compute the scalar product

Γ = 〈φ,B〉

The result is:

|Γ|2 = 4w2
0W1W2√

(w2
0 +W 2

1 )
2 +

b2W 4
1

R2
1

√
(w2

0 +W 2
2 )

2 +
b2W 4

2

R2
2

where b ≡ πw2
0/λ is the usual Rayleigh parameter for the TEM00 mode.

This expresses the rate of incoming power one can couple in a perfect TEM00

mode when the incoming amplitude is astigmatic in such a way that the
intensity has two different widths along x and y, and the wavefront two
different curvatures along x and y.
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3.3.9 Properties of the Displacement polynomials

The {Qmn} polynomials have useful properties, that we summarize below
without proof. All can be obtained after some elementary algebra, using the
recurrence relations of the Hermite polynomials.

• Definition:

Qmn(x) =
min(m,n)∑

k=0

(−2)k m!n!

k! (m− k)! (n− k)!
xm+n−2k (3.40)

making clear the symmetry with respect to m and n.

• Value at x = 0:
Qmn(0) = 0 (m 6= n) (3.41)

Qmm(0) = (−2)mm! (3.42)

• Recurrence relation:

Qm+1,n(x) = xQmn(x)− 2nQm,n−1(x) (3.43)

or as well
Qm,n+1(x) = xQmn(x)− 2mQm−1,n(x) (3.44)

• Orthogonality:

∑

k≥0

1

2kk!
Qmk(x) Qkn(x) = 2mm! ex

2/2 δmn (3.45)

• Addition law:

∑

k≥0

(−1)k

2kk!
Qmk(x) Qkn(y) = e−xy/2 Qmn(x+ y) (3.46)

• Derivative:

dQmn(x)

dx
= mQm−1,n(x) + nQm,n−1(x) (3.47)

• Some of the first polynomials:
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0 1 2 3
0 1 x x2 x3

1 x x2 − 2 x3 − 4x x4 − 6x2

2 x2 x3 − 4x x4 − 8x2 + 8 x5 − 12x3 + 24x
3 x3 x4 − 6x2 x5 − 12x3 + 24x x6 − 18x4 + 72x2 − 48
4 x4 x5 − 8x3 x6 − 16x4 + 48x2 x7 − 24x5 + 144x3 − 192x
5 x5 x6 − 10x4 x7 − 20x5 + 80x3 x8 − 30x6 + 240x4 − 480x2

The first lines are simple:

Q0n(x) = xn (3.48)

Q1n(x) = xn+1 − 2nxn−1 (3.49)

Q2n(x) = xn+2 − 4nxn + 4n(n− 1) xn−2 (3.50)

Q3n(x) = xn+3 − 6nxn+1 + 12n(n− 1) xn−1 − 8n(n− 1)(n− 2) xn−3

(3.51)

• Miscellaneous:
∑

n≥0

Qmn(x)

n!
= (x− 2)m ex

3.3.10 Structural properties of Displacement matrices

Practical use of the displacement operators raises several questions.

Energy conservation The energy coming under the form of a given mode
(m,n) is in general spread over all others after any non perfect optical ele-
ment. We have seen that rotations and translations can be represented by
operators of the form

Umn,kl(p, q) =

(
1√
2

)m+n+k+l
um+n+k+l

√
m!n!k!l!

Qmk(p) Qnl(q) e
−(p2+q2)/4

where u is a unitary complex number, and (p, q) a couple of parameters
representing the two degrees of freedom of the displacement. Conservation
of the energy brought by any (m,n) mode requires the following relation:

1 =
∑

k,l

|Umn,kl(p, q)|2
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This leads to compute |Qmk|2. We do it for definiteness in the case of rota-
tions, but the method is quite general. We first take the formula 3.28 defining
the Q polynomials, this yields

Qmk(p) = (−i)m+k 1√
π

ep
2/4 Imk(p)

then the formula 3.26 giving the definition of the Imk integrals:

Imk(p) =
∫

R

dx e−x
2

eipx Hm(x)Hk(x)

So that

|Qmk(p)|2 =
1

π
ep

2/2
∫

R2

dx dx′ e−(x2+x′2) eip(x−x
′) Hm(x)Hm(x

′)Hk(x)Hk(x
′)

We have consequently

∑

k

1

2kk!
|Qmk(p)|2 =

1

π
ep

2/2×

×
∫

R2

dx dx′ e−(x2+x′2) eip(x−x
′) Hm(x)Hm(x

′)
∑

k

1

2kk!
Hk(x)Hk(x

′)

Due to the closure relation 2.44, we have

∑

k

1

2kk!
Hk(x)Hk(x

′) =
√
πe(x

2+x′2)/2δ(x− x′)

from what we get

∑

k

1

2kk!
|Qmk(p)|2 =

1√
π

ep
2/2
∫

R

dx e−x
2

Hm(x)
2

and due to the normalization relation 2.43, we find

∑

k

1

2kk!
|Qmk(p)|2 = 2mm! ep

2/2 (3.52)

(This is an indirect proof of eq.3.45 for m = n). Now, if we return to the
energy balance, we have

∑

k,l

|Umn,kl(p, q)|2 =
1

2m+nm!n!
e−(p2+q2)/2

[
∑

k

1

2kk!
|Qmk(p)|2

] [
∑

l

1

2ll!
|Qnl(q)|2

]
= 1

owing to eq. 3.52.
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Transitivity Given any two displacements of parameters (p1, q1) and (p2, q2)
respectively, the result of the sequence is a displacement of parameters (p1+
p2, q1 + q2).

∑

kl≥0

Dmn,kl(p1, q1) Dkl,st(p2, q2) = Dmn,st(p1 + p2, q1 + q2)

This is a direct consequence of the addition law 3.46.

Inversion Given any displacement of parameters (p, q), represented by ma-
trixDmn,kl(p, q), the inverse displacement (−p,−q) is represented byDmn,kl(−p,−q),
and we have ∑

kl≥0

Dmn,kl(p, q) Dkl,st(−p,−q) = δms δlt

This was a priori expected, but it is instructive to see that it is one more
consequence of the addition law 3.46. It also can be deduced from transitivity,
for

Dmn,kl(0, 0) = δmk δnl

3.3.11 Magnitude of displacement matrix elements

Consider for instance the rotation matrix:

Rmnkl(θ, φ) = R′
mk(θ, φ)R

′
nl(θ, φ)

We can set as previously

p ≡
√
2
2π

λ
w θ cos(φ) , q ≡

√
2
2π

λ
w θ sin(φ)

so that, setting

R′
mk(x) ≡ im+k

√
2m+km!k!

Qmk(x) e
−x2/4

we have
Rmnkl(θ, φ) = R′

mk(p)× R′
nl(q)

It is interesting to check the numerical values of these matrix coefficients.
For instance, we can study the coupling of the TEM00 mode with higher
order ones (see Fig.3.24). we see that the coupling efficiency is very small
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Figure 3.24: Power coupled from the TEM00 mode into higher order modes
(TEM0n) through rotation of a mirror
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Figure 3.25: Power coupled from the TEM10 mode into higher order modes
(TEM1n) through rotation of a mirror

for orders larger than 2 and values of p smaller than 1. If we assume (Virgo
parameters) a waist of 2 cm on the cavity input mirror, a curvature radius
of 3.45 km of the far mirror, the width on that far mirror is about 5.5 cm,
and the correspondance between p and the rotation angle θ is:

θ = p × 2.18 10−6 Rd

so that p = 1 corresponds to about 13% of the gaussian aperture θg =
λ/πw0. The gaussian aperture corresponds to p ∼ 7.8. In this angular
region, it makes sense to assume a very weak rate of modes having orders
larger that 2. It is also interesting to see how the TEM10 and TEM20 modes,
for instance, couple to higher orders (see Figs.3.25 and 3.26): This shows
that a light initially (00) is weakly directly coupled into the (20) mode, as well
as indirectly through (10). This makes consistent an approximate model (see
next subsection) involving only first orders modes, when θ is small. Finally,
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Figure 3.26: Power coupled from the TEM20 mode into higher order modes
through rotation of a mirror
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Figure 3.27: Power coupled from the TEMmm mode into itself

we show how the first orders are coupled into themselves (see Fig.3.27): The
complete map of the rotation matrix squared modulus in the (p, q) plane has
the following pattern (the example of R0055(p, q) is shown on Fig.3.28). The
four maxima correspond to the maxima already shown on Fig.3.24.

3.3.12 Numerical results

We check here the results we can obtain from a modal expansion limited to
orders up to 2. This means that we restrict the expansion to the 6 modes (00),
(10), (01), (20), (11),and (02). Namely, we consider a flat/spherical cavity
where the spherical mirror is rotated by an angle θ, and we study firstly the
displacement of the intracavity mode. We classically expect a transversal
displacement of ∆x = Rc × θ : see Fig.3.30. When the misalignment
angle θ increases, the stored poser decreases: see Fig.3.31. We can also
study the field reflected by the cavity. Fig.3.32 shows the evolution of the



3.3. MODAL EXPANSION 233

-10.00 -7.50 -5.00 -2.50  0.00  2.50  5.00  7.50  10.00
-10.00

-7.50

-5.00

-2.50

 0.00

 2.50

 5.00

 7.50

 10.00

-3.37e+01 -2.57e+01 -1.76e+01 -9.57e+00 -1.51e+00

Figure 3.28: Power coupled from the TEM00 mode into TEM55 after a rota-
tion, ((p, q) plane, logarithmic scale)
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Figure 3.29: Power coupled from the TEM88 mode into itself ((p, q) plane,
logarithmic scale)
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Figure 3.30: Map of the intracavity mode for θ = 2.9 µRd misaligment of the
far miror (A rather extreme case). The circle shows the theoretical location
of the mode.
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Figure 3.31: Intracavity power vs misalignment of the far mirror. Fi-
nesse=150 (solid line), Finesse=50 (dashed line). The red curves are obtained
from a full FFT simulation over 512×512 samples
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Figure 3.32: Power reflectance of a cavity for increasing tilt angle and for
several finesses

reflected amplitude from a cavity having a tilted far mirror. We see that
tilting the mirror has a negligible effect for small angles, and for larger values
is equivalent to a detuning, so that the reflectance increases. It is worth to
emphasize that this is not due to the longitudinal displacement of the mirror,
which has been corrected as if a servo loop were present. The rotation angle
being θ, the apex equation of the mirror (of curvature radius Rc) is:

z =
x2 + y2

2Rc
+ θx =

(x+ θRc)
2 + y2

2Rc
+

1

2
θ2Rc

a corrective phase of
δΦ = −πRcθ

2/λ

is therefore introduced in the propagator. For higher tilt angles, the re-
flectance of the cavity progressively reaches a constant value which is noth-
ing but the bare reflectance of the input mirror: the far mirror can not more
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Figure 3.33: Power reflectance of a cavity for increasing tilt angle and for
several finesses. The horizontal lines represent the power reflectance of the
input mirror corresponding to the different finesses

produce interferences in the cavity. This happens when the tilt angle reaches
values comparable with the beam aperture: see Fig.3.33. Remark that if the
tilt angle is equal to the beam gaussian aperture, the transverse displacement
of the intracavity beam is:

∆x = θgRc =
λ

πw0
Rc

so that

∆x/w0 = Rc/b

where b is the Rayleigh parameter. For the Virgo parameters, this is ∆x/w0 ∼
3, so that the input beam is mostly out the intracavity beam. Even if the in-
put field is a pure TEM00, a small misaligment introduces a second resonance
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Figure 3.34: Resonances of a Fabry Perot cavity with a small misalignment.
The red line is the theoretical position of the TEM10 mode

at the frequency (or cavity length corresponding to higher order modes, es-
pecially the TEM10 or the TEM01 depending on the direction of the tilt.
On Fig.3.34, we have scanned the free spectral range and compared the nu-
merical peak with the theoretical position of the (10) resonance. Finally, it
is possible to build a Michelson having a reference arm (ideal cavity) and
a second arm having a tilted far mirror. The dark finge pattern exhibits a
characteristic TEM10 signature. (Fig.3.35).

3.3.13 The A266 Algebra

We often need a fast simulation code for a dynamical model of misaligned
and detuned interferometer, in order for instance to study the global control
of the system. If the angles are small compared to the divergence of the
beam, it is possible to limit at 2d order the modal expansion for each mirror.
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Figure 3.35: Dark fringe on the output port of a Michelson for .1 µRd tilted
far mirror on one arm
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Moreover, we see fom the preceding table that the modes of order m,n are
coupled to the TEM00 at the m+ n order. A consistent 2d order expansion
will thus involve the only first 6 modes, and we shall see that it is possible
to carry out all calculations using a 2d order, rank 6× 6 matrix algebra that
we call A266. If we limit the expansion to the second order, the expression
of the mirror operator, using the notation

p =
√
2kwθ cosφ, q =

√
2kwθ sinφ

has the expression

Rmnkl(p, q) = e−(p2+q2)/4 Rmnkl(p, q)

where Rmnkl(p, q) is the following table:

00 10 01 20 11 02

00 1 i p√
2

i q√
2

− p2

2
√
2

−pq
2

− q2

2
√
2

10 i p√
2

1− p2

2
−pq

2
ip i q√

2
0

01 i q√
2

−pq
2

1− q2

2
0 i p√

2
iq

20 − p2

2
√
2

ip 0 1− p2 − pq√
2

0

11 −pq
2

i q√
2

i p√
2

− pq√
2

1− p2 − q2 − pq√
2

02 − q2

2
√
2

0 iq 0 − pq√
2

1− q2

There is an apparent inconsistency in keeping the exponential not expanded,
but this is not necessary for numerical computations, and gives much better
accuracy when the expansion parameter (for instance θ/θg is not infinitesi-
mal. The free propagation along the optical axis is represented by the diag-
onal operator

Pmn,pq = exp
[
−i(m+ n) arctan

(
L

b

)]
δmpδnq

where L is the propagation distance and b the Rayleigh Range. It is therefore
clear that all operators involved in A266 are of the form

M = M0 +M1 + M2

where the partial operators Mi (i = 1, 2, 3) contain respectively the zeroth
order in the perturbation strength (θ/θg or ∆x/w), the first order and the
second. Moreover, each partial operator has a special structure. We note
O3, O12 and O18 the sets of operators having these structures. Namely, O3

is the set of 6× 6 operators of the form
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α

β

β

γ

γ

γ

to which obviously belongs the propagation operator, and the zeroth order
of any operator, O12 is the set of 6× 6 operators of the form

ζ1 ζ2

ζ3 ζ4

ζ5 ζ6

ζ7

ζ8

ζ9

ζ10 ζ11

ζ12

to which belongs the first order part of the operators. O18 is the set of 6× 6
operators of the form



3.3. MODAL EXPANSION 243

ξ1 ξ2 ξ3 ξ4

ξ5 ξ6

ξ7 ξ8

ξ9 ξ10 ξ11

ξ12 ξ13 ξ14 ξ15

ξ16 ξ17 ξ18

to which belongs the second order part of the operators. This kind of storage
requires 3 + 12 + 18 = 33 places instead of 36 in the general case: There
is no waste of memory. The global structure is stable by the elementary
algebraic operations. More specifically, it is obvious that if A,B ∈ O3 , then
AB ∈ O3. if A ∈ O3 and B ∈ O12 resp O18 then AB ∈ O12 resp O18. What
is more remarkable is the following property which is the basis of A266: if
A,B ∈ O12 then AB ∈ O18. The separation in three partial operators
is therefore stable, and any algebraic operation reduces to trivial sums and
products. We give below the most necessary.

• The sum of two operators is trivially defined by

(A+B)0 = A0 +B0, (A+B)1 = A1 +B1, (A+B)2 = A2 +B2

• The product of two operators is defined by

(AB)0 = A0B0, (AB)1 = A0B1+A1B0 (AB)2 = A0B2+A1B1+A2B0

note that the structure allows algorithms faster than the standard ma-
trix product.

• The inverse of an operator is defined recursively by

(A−1)0 = A−1
0

which is a trivial operation, A0 being diagonal, then

(A−1)1 = −(A−1)0A1(A
−1)0
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(A−1)2 = −(A−1)0
[
A1(A

−1)1 + A2(A
−1)0

]

Remark that there is no need for a matrix inversion algorithm: In fact
this is the main reason for the efficiency of A266.

• The square root X of an operator A is defined recursively by the fol-
lowing scheme:

X0 =
√
A0

which is a trivial operation, A0 being diagonal, then

X1,ij =
A1,ij

X0,ii +X0,jj

X2,ij =
A2,ij − (X2

1 )ij
X0,ii +X0,jj

3.4 Monte-Carlo methods

If the system in which light propagates has a complex geometry, and if the
information carried by the phase is not essential, it is possible to represent
light by particles following straight trajectories between reflections or diffu-
sion processes. This is approximately the Newton theory of light. We call
”photons” these particles for brevity, though the quantum nature of light is
completely ignored in this approach. By launching randomly a large number
of such photons, statistics can tell us where the light goes and how we can
forbid certain areas to it (e.g. stray light studies). What is interesting is that
the diffraction phenomena can be represented up to a certain extent by this
particle description, leading to realistic models of light propagation.

3.4.1 Spatial spectra, plane waves and photons

We consider on an initial plane, a given complex amplitude of light A(x, y).
We can interpret the normalized square modulus of the amplitude as a prob-
ability density for a photon to be launched:

dP ′

ds
(x, y) = |A(x, y)|2

This doesn’t tell us the direction of the photon. We know that the angular
information on the angles can be extracted from the Fourier transform of
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the amplitude. The 2D Fourier transform of the amplitude is nothing but
an expansion in terms of plane waves having for transverse components of
~k, the conjugated variables (p, q). If we consider the square modulus of the
latter, we have, due to the Parseval-Plancherel theorem:

∫

R2

dp dq |Ã(p, q)|2 = 4π2

On the other hand, by using the substitution

p = k sin θ cosφ , q = k sin θ sin φ

we obtain
∫

R2

dp dq |Ã(p, q)|2 = k2
∫ 2π

0
dφ
∫ π

0
dθ |Ã(θ, φ)|2

and consequently:

1

λ2

∫ 2π

0
dφ
∫ π

0
dθ |Ã(θ, φ)|2 = 1

which shows that we can obtain a probability density for the angular distri-
bution by taking

dP ′′

dΩ
(θ, φ) =

1

λ2
|Ã(θ, φ)|2

Propagation of the light described by the complex amplitude A(x, y) will thus
be described by the two densities of probabilities: The departure point of a
photon will obey the statistics corresponding to dP ′/ds, and its direction,
the statistics defined by dP ′′/dΩ.

3.4.2 Propagation

After having chosen the departure point (x, y) and the direction of the pho-
ton (θ, φ), its trajectory is defined, and it is possible to compute the point
(X, Y ) at which it hits the plane z = d (see Fig.3.36). It is even possible to
compute the probability density dP ′/dS of the arrival point. The conditional
probability for a photon starting from (x, y) at z = 0 to hit the small target
of area dXdY , is

dP ′

dS
(X, Y, x, y)dXdY =

dP ′′

dΩ
(θ, φ)dΩ



246 CHAPTER 3. NUMERICAL METHODS

θ,ϕ

d

dX
dY

x

Y

X

y

Figure 3.36: propagation from plane to plane

where dΩ = dXdY/ρ2 is the elementary solid angle corresponding to the
target seen from the initial point, ρ(x, y,X, Y ) being defined by

ρ(x, y,X, Y ) =
√
(x−X)2 + (y − Y )2 + d2

For the full density, we get thus:

dP ′

dS
(X, Y ) =

∫

R2

dx dy
1

ρ2(x, y,X, Y )

dP ′′

dΩ
(θ(x, y,X, Y ), φ(x, y,X, Y ))

dP ′

ds
(x, y)

This is the integral expressing the transfer of the probability density from
z = 0 to z = d. If we adopt the paraxial approximation, we can replace ρ by

d, and θ by
√
(x−X)2 + (y − Y )2/d, so that:

dP ′

dS
(X, Y ) =

1

d

∫

R2

dx dy
dP ′′

dΩ

(√
(x−X)2 + (y − Y )2/d, φ(x, y,X, Y )

)
dP ′

ds
(x, y)

We can show on a very simple example how it works. Take a TEM00 nor-
malized mode defined by the amplitude:

A(x, y) =

√
2

πw2
exp

(
− x2 + y2

w2

)
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The Fourier transform is:

Ã(p, q) =
√
2πw2 exp

(
− w2(p2 + q2)

4

)

We have thus:

dP ′

ds
(x, y) =

2

πw2
exp

(
− 2(x2 + y2)

w2

)
(3.53)

and
dP ′′

dΩ
(θ, φ) =

2πw2

λ2
exp

(
− k2w2θ2

2

)
(3.54)

And the transfer equation is:

dP ′

dΩ
(X, Y ) =

4

λ2d2

∫

R2

dx dy exp

(
− 2(x2 + y2)

w2

)
exp

(
−2

π2w2[(x−X)2 + (y − Y )2]

λ2d2

)

This can be calculated either directly or by Fourier transform (being a con-
volution product) and the result is

dP ′

dS
(X, Y ) =

2

πw′2 exp

(
−2

X2 + Y 2

w′2

)

with

w′ = w

√√√√1 +

(
πw2

λd

)2

exactly as in paraxial wave optics. See Fig.3.37 for an example based on the
Virgo parameters: The initial waist is w0 =2 cm, the photons are assumed
emitted at a point given by the 2D gaussian random variable (x, y) at z = 0,
of parameter w0, the joint probability density being given by (3.53), then the
direction of flight is given by a new 2D gaussian random variable (ξ, η) of
parameter θg = λ/πw0, the joint probability density being given by (3.54).
and the hit point at z = d is calculated as

X = x+ d ξ , Y = y + d η

We see the agreement between the wave optics theory (lines) and the Monte-
Carlo result (histograms)
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Figure 3.37: Diffraction spot at 3 km of a 2 cm waist initial TEM mode.
Histogram: Monte-Carlo simulation. Solid curve: Diffraction theory

3.4.3 Diffraction patterns

It is not always possible to know the Fourier transform of the incoming
amplitude. This is generally possible at the initial plane, where a clean source
is assumed installed, but after propagation in a complex system, photons
randomly emitted propagating as in a billiard, and reaching a given plane,
do not allow to reconstruct the complex amplitude necessary to determine
dP ′′/dΩ. A very interesting procedure has been proposed in [19]. As they
pass near the edge of any aperture, the photons are scattered at random
angles, the standard deviation being inversely proportional to the distance
at the edge. The heuristic argument is borrowed from quantum mechanics: a
particle being at the distance ∆x of the edge of a screen may be seen as having
its location determined with accuracy ∆x. Consequently, the accuracy on its
momentum is ∆px = h/4π∆x (h is Planck’s constant). Now, the momentum
of a photon is known to be p = hk/2π, The relation ∆px/p = tan θ∗ allows
then to compute the standard deviation θ∗ corresponding to the uncertainty
∆px:

θ∗ = arctan

(
λ

4π∆x

)
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Figure 3.38: Diffraction by a half-plane. The screen is at d = 5m, the
wavelength is λ = 1.06µm. Number of photons launched: 106. Histogram:
Monte-Carlo simulation. Solid curve: Diffraction theory

We can test the procedure on the well-known problem of diffraction by a half
plane. We assume a wide and uniform light beam centered at x = y = 0
falling on a blade masking half of the plane (x < 0). If we consider a white
screen at z = d behind, the intensity of the light on it is given [7] by

I(x) = I0 ×
1

2





1

2
+ C



√

2

λd
x






2

+


1

2
+ S



√

2

λd
x






2

 (3.55)

Where C(x) and S(x) are the Fresnel functions (see[20]). We assume a
uniform random law for launching photons at x off the interval [−xM , xM ],
then, x being randomly chosen, if x < 0 the process stops and a new photon
is launched. if x > 0, its direction θ is drawn as a random deviate knowing
its standard deviation θ∗ (a gaussian deviate works). The hit point on a
screen at distance d is X = x + θd. The statistics is reported on Fig.3.38
(histogram), the line represents the wave optics theory with I0 = 1/2xM
(Eq.3.55). Remark the excellent agreement in the shadow region, and the
averaged behavior in the fringes region, due to the loss of information about
the phase.
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Chapter 4

Real mirrors

In this section, we present a more concrete representation of mirrors generally
involved in laser optical systems. The fact that the light source has a very
narrow linewidth around the nominal wavelength allows using mirrors having
a selective reflectance at the same wavelength. This is fortunate, because all
wavelengths mirrors, like metallic layers, have irreducible losses due to finite
conductivity (using superconducting metallic mirrors is still a dream, or more
exactly a nightmare, in realistic interferometers). This selective reflectance
can be achieved by superposing thin dielectric material layers as a coating on
a transparent block of dielectric material (substrate). The global quality of
such a mirror results from the quality of the substrate, and from the quality
of the coating.

4.1 Multilayer coatings

It is well known that light arriving at an interface separating two dielectric
media of different refraction indices gives rise to both a reflected and an
transmitted wave. A slice of dielectric material surrounded by other dielectric
materials with different indices may thus be expected to behave like a Fabry-
Perot cavity. By adjusting the round-trip phase inside to antiresonance, it
is possible to enhance the reflectance of the slice. . The reflectance of a
Fabry-Perot at antiresonance is, neglecting the losses :

R =
r1 + r2
1 + r1r2

251
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where r1, r2 are the reflection coefficient of the mirror. For small r, it is thus
easily seen that the global reflectance is almost the sum of the individual ones.
For r1 = r2 = 0.5, one finds R = 0.8. The leading idea is thus to superpose
more and more alternatively high and low index layers, producing a cascade
of Fabry-Perot’s, and making the global reflectivity increasing towards unity.

4.1.1 Dioptric matrix

We naively represent light in a dielectric medium of index n as a pair of
monochromatic plane waves, propagating along the z direction, one electric
E , one magnetic H, of the form

E(t, x, y, z) =



e−iωt einkz

0
0




H(t, x, y, z) =



0
n k

|k| e
−iωt einkz

0




where |k| ≡ ω/c. According to the sign of k, the wave is left or right prop-
agating. Once given E , the Maxwell equations impose the form of H. Re-
call that the Maxwell equations also impose the continuity of the tangential
components of both E and H at a boundary separating two dielectric media.
Consider namely a plane z = 0, separating a medium of index n1 (the left
half-space) and a medium of index n2 (the right half-space) (see Fig.4.1),
where a right-propagating wave E, and a left-propagating wave F are cross-
ing each other. The electric and magnetic fields are (we forget the e−iωt time
dependence) :

E(z) =



λein1kz + µe−in1kz

0
0




H(z) =



0
λn1e

in1kz − µn1e
−in1kz

0




in the left half-space, and

E(z) =



νein2kz + σe−in2kz

0
0
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µ

Figure 4.1: waves at a plane boundary

H(z) =



0
ν n2e

in1kz − σ n2e
−in1kz

0




for the right half-space. λ, µ, ν, σ are constant amplitudes. λ and σ are
given and we want to determine ν and µ. Continuity of Ex and Hy brings
the two equations : {

λ+ µ = ν + σ
n1(λ− µ) = n2( ν − σ)

from where we get

ν =
n2 − n1

n2 + n1
σ +

2n1

n2 + n1
λ

µ =
2n2

n2 + n1

σ +
n1 − n2

n1 + n2

λ

This allows a convenient quadrupole representation of the interface. Given
the incoming fields, namely E1 from the left and F2 from the right, we find
the outgoing E2 to the right and F1 to the left, assuming that the fields
are expressed, in the medium 2 at a distance d2 from the interface (d2 will
represent the layer thickness), with ϕ2 ≡ kn2d2, we get under the matrix
form : (

E2

F1

)
=

(
t12 r22
r11 t21

)(
E1

F2

)
(4.1)

We call Q12 the matrix operator. Owing to the preceding calculation, we
have

Q12 =

(
t12 =

2n1

n2+n1
eiϕ2 r22 =

n2−n1

n2+n1
e2iϕ2

r11 =
n1−n2

n2+n1
t21 =

2n2

n2+n1
eiϕ2

)
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Obviously, the relevant coefficients (Q21) to apply when the two media are
exchanged are easily deduced from the preceding by simply exchanging the
subscripts 1 and 2. We thus have the two quadrupole operators respectively
attached to a low index and a high index layer, assuming n2 > n1 :

qhigh =

(
2n1

n2+n1
eiϕ2 n2−n1

n2+n1
e2iϕ2

n1−n2

n2+n1

2n2

n2+n1
eiϕ2

)
(4.2)

qlow =

(
2n2

n2+n1
eiϕ1 n1−n2

n2+n1
e2iϕ1

n2−n1

n2+n1

2n1

n2+n1
eiϕ2

)
(4.3)

4.1.2 Models of stacks

The stack of N layers taken as a whole, has also a quadrupole operator
Qstack. It can be obtained from qlow and qhigh. But the composition law of
Q-like operators is more complicated than ordinary linear algebra. Assume
for instance that the operator Q associated to a stack of n − 1 layers is of
the form

Q =

(
T P
R Θ

)

and we want to add one more layer at the right, either low or high index.
Let q be the layer operator :

q =

(
t ρ
r θ

)

Introducing intermediate fields, we can write

(
E2

F1

)
= Q

(
E1

F2

)

for the uncomplete stack, and

(
E3

F2

)
= q

(
E2

F3

)

for the extra layer. By solving the system with respect to (E1, F3), we get

(
E3

F1

)
= Q⊗ q

(
E1

F3

)
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where the operator Q⊗ q is given by

Q⊗ q =

(
tT

1−Pr
ρ+P (tθ−rρ)

1−Pr
R+r(TΘ−RP )

1−Pr
θΘ

1−Pr

)
(4.4)

This is the Q-product of two operators. It is now easy to construct the
operator corresponding to a given stack, when for instance the first layer is
low index : assume Q0 is the operator corresponding to this layer of low
index with vacuum in the left half-space (Q0 is a special case of qlow with n2

replaced by 1). Then the complete stack operator is obtained as

Qn = (((Q0 ⊗ qhigh)⊗ qlow)⊗ qhigh)⊗ qlow . . .

The tuning of the elementary Fabry-Perot’s is determined by the thickness
of the deposit. The best reflectivity is obtained with ϕ2 = ϕ1 = π/2 (quarter
wave) and ϕ0 = π for the initial layer.

4.1.3 Numerical codes

An explicit analytical calculation is obviously untractable and even useless
when n is larger than 2 or 3, but the algorithm is very well adapted to
numerical methods. The following plot 4.2 shows the reflectance of a 30 layers
stack : the indices were n1 = 1.4783 and n2 = 2.10225. The reflectivity for
the nominal wavelength would be 1 − 4× 10−9. We see that the reflectivity
remains high even for up to 20% variation of the wavelength.

4.2 Surface maps

In order to test mirrors before and after coating, measurements of the surface
height are performed by interferometric means. The result is a 2D data set
{zij}, containing samples measured a the nodes {xij , yij} of a grid. This is for
instance the result of a measurement of a 7 cm diameter mirror (see Fig.4.3)
: one easily sees a tilt of the mirror axis.

4.2.1 Collimation and flattening

In general the method of measurement introduces a wedge, i.e. a non zero
angle between the symmetry axis of the surface and the optical axis. It is
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Figure 4.2: Variations of reflectance vs wavelength

thus necessary to re-orient the surface. We can define the surface axis by the
normal to the mean plane. The mean plane is defined by the linear equation

z = a x + b y + c

where (a, b, c) are parameters to be defined by a leat-square criterion, giving
the normal equations





a < x2 > + b < xy > + c < x > = < xz >
a < xy > + b < y2 > + c < y > = < yz >

a < x > + b < y > + c = < z >
(4.5)

where the average symbol < . . . > has the following definition for any quan-
tity X defined on the grid :

< X > =

∑
ij wijXij∑
ij wij

(4.6)

The wij are weights, chosen according to the parameter w of the beam :

wij = exp
(
−2(x2ij + y2ij)/w

2
)
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Figure 4.3: Susbstrate of mirror : surface as measured

The solution is

a =
V (y)Cov(x, z)− Cov(x, y)Cov(y, z)

V (x)V (y)− Cov(x, y)2

b =
V (x)Cov(y, z)− Cov(x, y)Cov(x, z)

V (x)V (y)− Cov(x, y)2

c = < z > −a < x > −b < y >

where the variances-covariances have the usual definition

V (x) =< x2 > − < x >2 , V (y) =< y2 > − < y >2 , Cov(x, y) =< xy > − < x >< y >

The collimation is obtained by the correction

zij → zij − a xij − b yij − c
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Figure 4.4: Collimated surface

one sees the same mirror map after collimation (see Fig.4.4). The next step
is to extract the curvature radius of the surface. This can be done by fitting
a model of the type

z = mr2 + p (r2 ≡ x2 + y2)

The normal equations are satisfied by

m =
< r2z > − < r2 >< z >

< r4 > − < r2 >2

p = < z > −m < r2 >

c is related to the curvature radius Rc of the mirror by Rc = 1/2m The
determination of the curvature was done by a procedure in which the width
w of the light beam is known. But if the mirror is involved in a cavity, this
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width is precisely determined by the curvature, and it seems that it becomes
an implicit problem. As customary, it can be solved by iterations : one begins
with an initial guess of the curvature (it is not likely that we have no idea a
priori of the curvature), then we compute the corresponding w, which allows
a better estimate of the curvature, and so on. In fact, a reasonable initial
guess gives a good corrected value within one cycle only.

4.2.2 Weighted RMS roughness

Once found the coefficients (m, p), one can make the correction

zij → zij −mr2ij − p

This is the flattening operation. The result of the curvature correction is the
residual departure of the mirror from the nearest paraboloid (see Fig.4.5).
The statistics

σ =
√
< z2 > − < z >2

with the already precised meaning of < . . . >, and applied to the collimated
and flattened surface, gives information on the roughness, we call it the
weighted RMS roughness. It is the relevant parameter for scattering losses
estimation (see below).

4.2.3 2D interpolation techniques

The mirror map has its own sampling grid, and the numerical propagation
program has also its (different) own. It is therefore in general necessary to
convert a map from an initial grid to another. This is done by interpolation.
Interpolation in 1D data series is straightforward, but in a 2D data array, it
is more difficult, this is a reason for giving here the basic ideas. The problem
reduces eventually to find an estimation of a function f(x, y), knowing its
values on a grid {xi, yj}. We assume, for the sake of simplicity that the
sampling grid is equally spaced, i.e.

xi+1 − xi = ∆x

yj+1 − yj = ∆y

so that knowing x and y determines easily the cell (i, j)− (i+1, j+1) where
the estimation point falls. The only point is thus to estimate f(x, y) knowing
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Figure 4.5: Oriented and flattened surface : An example of a residual rough-
ness

the surrounding data : fij, fi+1 j , fi j+1, fi+1 j+1, ∆x, ∆y. where we have
set fij ≡ f(xi, yj).

A linear interpolation formula is of the type

z = a ξ + b η + c

where ξ ≡ (x−xi)/∆x and η ≡ (y−yj)/∆y. it depends on three parameters,
and three data are necessary to determine them. We have the choice between
two solutions (see Fig.4.6), the point M(x, y) may be viewed, for instance,
as either in the ABC or in the BCD triangle. These two triangles determine
two different planes, and consequently two estimations of f(ξ, η). We could
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Figure 4.6: 2D interpolation problem

take the average of them. In fact this is equivalent to the following procedure
: call O the center of the rectangular cell. Assign to O the estimate f0 taken
as the average of the surrounding values, i.e. f0 = (fij + fi+1 j + fi j+1 +
fi+1 j+1)/4. We have now four triangles (AOB, BOC, COD, DOA) with
known node values. It is easy to see to which of them M belongs, and use
the corresponding plane to estimate fM . For instance in the case of Fig.4.6,
we would have

f(ξ, η) =
fi+1 j+1 + fi+1 j − fi j+1 − fij

2
ξ

+ (fi+1 j+1 − fi+1 j) η +
fi+1 j + fi j+1 − fi+1 j+1 + fij

2
and obviously different formulas, depending on the relevant triangle.

A quadratic interpolation is of the form

z = a + b ξ + c η + d ξη

and the four coefficients are completely determined by the four corners of the
cell ; the result is

f(ξ, η) = fij + (fi+1 j − fij) ξ + (fi j+1 − fij) η+

+ (fi+1 j+1 + fij − fi+1 j − fi j+1) ξη

The two methods give the exact values on the nodes, and reduce to ordinary
(1D) linear interpolation on the edges. The quadratic interpolation intro-
duces a curvature of the interpolating surface that may give spurious effects.
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Figure 4.7: sketch of the modecleaner

Higher order polynomials can even allow to have continuous derivatives at
the edges, smoothing the surface.

4.2.4 Backcoupling due to roughness

An example of direct application of the preceding methods has been found
in the issue caused by the so-called mode-cleaner installed on the beam, just
before entering the interferometer. The mode-cleaner consists in a three-
mirrors ring cavity having the shape of a long equilateral triangle having
thus a very sharp angle. The length of the basis is approximately 9 cm,
whereas the length of one of the long sides is about 140 m. The two mirrors
forming the basis (see Fig.4.7 are flat and nearly othogonal, and the far
mirror is spherical with a curvature radius about 180 m. The reason for such
a ring cavity is to avoid spurious reflection of the laser beam off the input
mirror. Only one propagation direction is in principle allowed in the ring, say
clockwise. But the incidence angle on the curved mirror is so sharp (about
3 10−4 Rd) that a fraction of the light scattered by the surface may be sent in
the counterclockwise mode, resulting in interferences on the photodiode used
to lock the system, and eventually causing instabilities. We can study and
evaluate the effect on the roughness map of the spherical mirror as follows.
The coordinates are such that the z axis is the spherical mirror axis. the x, y
axes are orthogonal and within the plane tangent to the mirror. We denote
by ϕ0(x, y) an incoming gaussian beam, matched to the mirror, and incident
with angles (θ, φ). We have

ϕ0(x, y) =

√
2

πw2
exp

[
−(x2 + y2)/w2

]
exp

[
−ik(x2 + y2)/2R

]
×

× exp [−ikθ(x cos φ+ y sinφ)]
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The mirror operator is

M(x, y) = exp [2ikf(x, y)]

where f(x, y) refers to the wavefront map of the mirror, including the mean
paraboloid plus the residual roughness. The reflected beam is thus

ϕR(x, y) =M(x, y)× ϕ0(x, y)

The counter propagating beam ϕcis the phase conjugate of ϕ0 :

ϕc = ϕ0

the coupling coefficient Γ(θ, φ) between the reflected and the counterpropa-
gating beams is given by the hermitian scalar product:

Γ(θ, φ) = 〈ϕc, ϕR〉

or, in detail :

Γ(θ, φ) =
∫

R2

I(x, y) exp

[
2ik

(
f(x, y)− x2 + y2

2R

)]
exp [−2ikθ(x cos φ+ y sin φ)] dx dy

where I(x, y) is the normalized intensity distribution in the beam. Note

that the function δf(x, y) ≡ f(x, y) − x2 + y2

2R
is nothing but the residual

roughness of the mirror (see Fig.4.8).
This residue being small compared to a wavelength, we can write

Γ(θ, φ) = exp

[
−2π2w2θ2

λ2

]
+2ik

∫

R2

I(x, y) δf(x, y) exp [−2ikθ(x cos φ+ y sinφ)] dx dy

−2k2
∫

R2

I(x, y) δf(x, y)2 exp [−2ikθ(x cos φ+ y sinφ)] dx dy

When the roughness is zero, the first term still remains. It represents the
natural overlap of the reflected beam with the phase conjugate beam, due
to gaussian divergence. If θ = 0, this overlap is simply unity, expressing the
perfect matching of the beam. We can express the natural overlap as :

Γ0(θ) = exp
[
−2θ2/θ2g

]



264 CHAPTER 4. REAL MIRRORS

-0
.0

15-0
.0

10-0
.0

05 0
.0

00 0
.0

05 0
.0

10 0
.0

15

x

-0
.0

15

-0
.0

10

-0
.0

05

 0
.0

00

 0
.0

05

 0
.0

10

 0
.0

15

y

Figure 4.8: Residual roughness in the central zone of the MC spherical mirror,
units are m.

where θg ≡ λ/πw. For the Virgo mode-cleaner parameters, we have θg ∼
3.15 10−5 Rd. For values of θ comparable to the mode-cleaner sharp angle
(θMC ∼ 3. 10−4 Rd), we see that |Γ0|2 is extremely small and definitely
negligible. Within the angular region corresponding to backscattering, it is
thus possible to reduce the expression of the coupling factor to the accurate
approximation

|Γ(θ, φ)|2 = 4k2
∣∣∣∣
∫

R2

I(x, y) δf(x, y) exp [−2ikθ(x cos φ+ y sinφ)] dx dy+

+ik
∫

R2

I(x, y) δf(x, y)2 exp [−2ikθ(x cos φ+ y sin φ)] dx dy

∣∣∣∣
2

showing that the result reduces eventually to the Fourier transform of the
roughness, weighted, as usual, by the intensity distribution of the beam. For
numerical computation, it is straightforward to use the exact formula

|Γ(θ, φ)|2 =
∣∣∣J̃(2kθ cos φ, 2kθ sinφ)

∣∣∣
2

where J(x, y) ≡ I(x, y) exp[2ikδf(x, y)]. We give on Fig.4.9 a map of the
backcoupling in angular coordinates. The outer thin circle corresponds to
coupling with the counterpropagating beam for all azimuth angles of the
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Figure 4.9: Coupling coefficient as a function of (θ, φ) (logarithmic scale).
The star shows the optimal orientation of the mirror
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Figure 4.10: Coupling coefficient as a function of φ for backscattering

incident beam, or as well for all rotations of the mirror around its axis. The
inner thin circle surrounds a non sigificant region where the natural overlap
dominates, and has been limited. We see that backcoupling depend sharply
on this azimuth angle φ. One could rise the question of the sensitivity of this
pattern with respect to the centering of the analyzing beam : in other words,
has this pattern any physical reality ? The answer can be obtained by varying
via a small offset the incidence location on the mirror, then taking the average
value of |Γ|2 over all locations ; we call dithering this operation. If we consider
a gaussian distribution of parameter σ of these incidence locations, dithering
is strictly equivalent to taking an analyzing beam of width w′ =

√
w2 + σ2.

For plausible values of σ (analogous to an error in the centering). The map
being rather unsensitive to small variations of w, we conclude that it has an
actual physical meaning. It also shows that there are preferred orientations,
and that these preferred orientations require a rather accurate positioning.
Fig.4.10 represents the variations of |Γ|2 along the outer circle, i.e. for all
possible orientation of the mirror, the incidence angle being fixed. The angle
of 0.37 Rd found on the curve corresponds to a hole in the speckle as seen
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on Fig.4.9 and marked by a star.

4.2.5 Zernike polynomials

In traditional instrumental optics, there is a need for analyzing and represent-
ing the departure of a given mirror surface with respect to the ideal shape. A
systematic surface analysis consists firstly in finding a family of orthogonal
defects over which a real surface can be expanded. The orthogonality makes
possible to treat separately the various defects, and for instance to subtract
any one of them without changing the expansion of the remaining surface.
The required orthogonality is obtained with a family of functions Znm(ρ, ϑ)
in polar coordinates. It is necessary to fix the radius a of the mirror, then
ρ ≡ r/a. The variables (ρ, ϑ) are separate, and in fact,

Znm(ρ, ϑ) = Rm
n (ρ)×

{
sinmϑ
cosmϑ

where the Rm
n (ρ) are a family of orthogonal polynomials first introduced by

F. Zernike for n = 0, 1, . . . and m = n, n − 2, . . . (it ends either at 0 or 1
depending on the parity of n):

Rm
n (ρ) = cnm

(n−m)/2∑

p=0

(−)p(n− p)!

p!
(
n+m
2

− p
)
!
(
n−m
2

− p
)
!
ρn−2p (4.7)

The cnm are normalization constants. The Rm
n polynomials obey

∫ 1

0
Rm
n (ρ)R

m
n′(ρ) ρ dρ =

1

2(n+ 1)
δnn′

and the circular functions obey :
∫ 2π

0
sinmϑ sinm′ϑ dϑ = πδmm′

∫ 2π

0
cosmϑ cosm′ϑ dϑ = π(1 + δm0)δmm′

sine et cosine being obviously orthogonal. The special behaviour of cos(0 ×
ϑ) ≡ 1 forces us to have the following normalization constant :

cmn =

√√√√ 2(n+ 1)

π(1 + δm0)
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The expansion of a surface of equation z = f(x, y) on the Zernike basis is as
follows :

f(ρ, ϑ) =
∞∑

n=0

n∑

m=0or1

fnm Znm(ρ, ϑ)

with

fmn =
∫ 1

0

∫ 2π

0
f(ρ, ϑ)Znm(ρ, ϑ) ρ dρ dϑ

The generating code for calculation of Rm
n (ρ) is very short :

c===========================================================

real function zerpol(n,m,rho)

implicit none

c

integer n,m,d,s,i

real facm,rapp,rho

real alphaz,alpha,rnm,ro2

c

if (m.gt.n) then

print*,’ERROR ! : m should be =< n !’

stop

endif

c

d=(n-m)/2

s=(n+m)/2

ro2=rho*rho

rapp=1

do i=0,n-s-1

rapp=rapp*(n-i)

enddo

facm=1

do i=2,d

facm=facm*i

enddo

alphaz=rapp/facm

alpha=alphaz

rnm=alpha

do i=0,d-1

alpha=-alpha*(s-i)*(d-i)/float((n-i)*(i+1))

rnm=ro2*rnm+alpha
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Figure 4.11: Some of the first radial Zernike polynomials

enddo

if (m.eq.0) then

zerpol=sqrt(float(n+1))*rnm

else

zerpol=sqrt(float(2*(n+1)))*rnm*rho**m

endif

return

end

c===========================================================

A plot of the first Zernike radial polynomials is shown on Fig.4.11. The
first Zernike functions have the following interpretation, after V.N.Mahajan
[21] :
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n m Zm
n name

0 0 1 Piston
1 1 2ρ cosϑ x-tilt
1 1 2ρ sinϑ y-tilt

2 0
√
3(2ρ2 − 1) Defocus

2 2
√
6ρ2 cos 2ϑ Astigmatism

2 2
√
6ρ2 sin 2ϑ Astigmatism

3 1
√
8(3ρ3 − 2ρ) cosϑ Primary x coma

3 1
√
8(3ρ3 − 2ρ) sinϑ Primary y coma

3 3
√
8ρ3 cos 3ϑ Triangular astigmatism

3 3
√
8ρ3 sin 3ϑ Triangular astigmatism

4 0
√
5(6ρ4 − 6ρ2 + 1) Primary spherical

4 2
√
10(4ρ4 − 3ρ2) cos 2ϑ Secondary astigmatism

4 2
√
10(4ρ4 − 3ρ2) sin 2ϑ Secondary astigmatism

4.2.6 Roughness and scattering losses

Let A(x, y) be the amplitude of a TEM00 gaussian mode falling on a mirror
the surface of which is defined by the apex equation z = f(x, y)−r2/2R. The
reflected wave is (forgetting the scalar or photometric reflection coefficient)

B(x, y) = e−ikr
2/R+2ikf(x,y)A(x, y)

Its coupling with the TEM00 mode is given by the hermitian scalar product
< A′, B >, where A′ is the phase conjugate of A (reversed wavefront) so that
the coupling factor of the TEM00 onto itself through reflection is

γ =
∫
A′∗(x, y) e2ikf(x,y)A(x, y) dx dy

or

γ =
2

πw2

∫
e−2r2/w2

e2ikf(x,y) dx dy

If we assume the real surface near the ideal one, then we can expand the
phase at second order, and write

γ =
2

πw2

∫
e−2r2/w2

[
1 + 2ik(f(x, y)− 2k2f(x, y)2 + . . .

]
dx dy

f(x, y) is defined up to a piston (additive constant) which can always be
chosen such that ∫

e−2r2/w2

f(x, y) dx dy = 0
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Then the function f(x, y) is nothing but what we called ”flattened” surface
in a preceding section, and the quantity

q =
2

πw2

∫
e−2r2/w2

f(x, y)2 dx dy

is what we called ”weighted RMS roughness”, so that

γ = 1− 2k2 q

in terms of power, this is

|γ|2 = 1− 4k2 q

and the losses due to the mirror’s imperfections are simply

p = 4k2 q
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Chapter 5

Scattered light

5.1 Introduction

Due to the imperfect nature of the surface of the reflecting coating, mirrors
not only reflect light and dissipate a part of it into heat, but also scatter
light in all directions. In supermirrors as those used in gravitational wave
interferometers, the total losses (thermal dissipation + scattering) is very low,
of the order of a few ppm, so that the amplitudes of scattered light, unless the
mirror surface is polluted, is extremely small. Scattering is a process in which
a perfect TEM mode is coupled to partial waves of any direction, depending
on the size of the defects of the reflecting surface. The symmetrical process
is possible: Diffuse light coming from any direction may be partially coupled
into a TEM mode. If that diffuse light is phase modulated for any reason,
the modulation will contaminate the stored TEM mode. The most evident
scenario is scattering of light off a mirror, reflection of the diffuse light on the
metallic walls of the vacuum pipe, then inverse scattering on the emitter or
any other mirror. Due to the seismically driven motion of the vacuum pipe,
seismic noise is re-entering the readout beam, and we have a by-pass of the
seismic isolation system. In order to avoid such a catastrophe, it has been
soon seen that a system of baffles for trapping scattered light was necessary.
But the design and the nature of these baffles must be such that the remedy
makes nothing worse than the disease. It is clear that this double scattering
process is extremely weak, but GW interferometers are designed to measure
better than 10−11 Rd.Hz−1/2 phase changes, so that any source of noise, even
very weak, must be assessed. This is why models of scattering are useful.
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5.2 Scattering mirrors

The scattered light we are faced with, is generated by reflection of light beams
on mirrors with weak roughnesses. Mirrors installed in GW interferometers as
Virgo have roughnesses of rms value of a few nm, thus very small compared
to the usual wavelength (1µm). The departure of the surface of a mirror
from its ideal geometrical shape can be represented by a two-dimensional
random process f(~x), where ~x represents the coordinates in the plane where
we project the surface. We can assume without loss of generality that it is a
centered process:

〈f〉 = 0

we also assume the process stationary:

〈f 2〉 = σ2

But the relevant statistics of the process, for studying scattering, is the au-
tocorrelation function:

C(~x− ~x′) = 〈f(~x).f(~x′)〉/σ2 (5.1)

Here the stationarity implies that the autocorrelation function does not de-
pend on the location in the plane, but only on the separation vector. It will
be further assumed that the autocorrelation function depends only on the
length of the separation vector:

C(~x− ~x′) = C(‖ ~x− ~x′ ‖)
in words, the roughness is isotropic.

Suppose now that a light beam described by the amplitude φ(~r) is im-
pinging normally to the reflecting surface, and let us call ψ(~x) the reflected
beam’s amplitude. We have:

ψ(~x) = e2ikf(~x)φ(~x)

By taking the Fourier transform, we have:

|ψ̃(~p)|2 =
∫
ei~p(̇~x−

~x′)e2ik[f(~x)−f(
~x′)]φ0(~x)φ

∗
0(~x

′)d~x d~x′

Owing to the hypothesis that f ≪ λ, we can expand the exponential and
write:

|ψ̃(~p)|2 =
∫

ei~p(̇~x−
~x′)
{
1 + 2ik[f(~x)− f(~x′)]− 2k2[f(~x)2 + f(~x′)2 − 2f(~x).f(~x′)

}
×
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×φ0(~x)φ
∗
0(~x

′)d~x d~x′

By taking the expectation value, we get:

〈|ψ̃(~p)|2〉 = (1−4k2σ2)|φ(~p)|2+4k2σ2
∫
ei~p(̇~x−

~x′)C(~x− ~x′)φ0(~x)φ
∗
0(~x

′)d~x d~x′

or as well:

〈|ψ̃(~p)|2〉 = (1− 4k2σ2)|φ(~p)|2 + 4k2σ2 1

4π2

∫
C̃(~q).|φ̃(~p− ~q)|2 d~q (5.2)

For gaussian beams, and even more for hypergaussian beams, the angular dis-
tribution is sharply peaked, taking significant values only in the neighborood
of ~p = ~0. We can assume that the Fourier transform of the autocorrelation
function (i.e. the power spectral density) does not appreciably vary on angles
of the order of the angular width of the beam. In the preceding integral, the
beam function can therefore be treated as a Dirac function, and we have:

〈|ψ̃(~p)|2〉 = (1− 4k2σ2)|φ(~p)|2 + 4k2σ2C̃(~p) (5.3)

Under this form, it is clear that the reflected light is the sum of two contribu-
tions, one having the same angular distribution as the incoming beam, that
we call specularly reflected beam, and one having an angular distribution
given by the properties of the surface, namely the power spectral density of
f . We identify with scattered light this contribution. It can moreover be
seen that the incoming power is shared between specularly reflected light,
and scattering. We have:

Pspec/Pin =
1

4π2

∫
(1− 4k2σ2)|φ(~p)|2 d~p = 1− 4k2σ2

which shows that the scattering losses ǫ are given by:

ǫ = 4k2σ2

and we have:

Pscatt/Pin =
1

4π2

∫
4k2σ2C̃(~p) d~p = 4k2σ2 = ǫ

We can express the distribution of scattered light as:

1

Pin

dPscatt

d~p
=

ǫ

4π2
C̃(~p)
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and by indentifying the Fourier coordinates to angles according to ~p ≡
(k sin θ cosφ, k sin θ sinφ), we can write:

d

d~p
=

λ

4π2

d2

sin θ dθ dφ
=

λ

4π2

d

dΩ

so that
1

ǫPin

dPscatt

dΩ
=

1

λ2
C̃(k sin θ)

where we have explicitly taken into acount the isotropy of the autocorrelation.
Now,

dPscatt

Pscatt dΩ
(θ)

is a normalized function, and we can set

dPscatt

Pscatt dΩ
(θ) =

p(θ)

2π
(5.4)

where ∫ π

0
p(θ) sin θ dθ = 1

and finally, by comparison between the two last equations:

C̃(k sin θ) =
λ2

2π
p(θ) (5.5)

Information on the normalized angular density of scattered power (ADSP)
can be obtained by different ways depending on the angular range. For
very small angles, corresponding to long correlation distance defects, a direct
measurement of the surface by using a profilometer can be carried out. For
larger angles, a direct measurement of the ADSP is possible.

5.3 The scattering coherence function

The central concept for a wave optics treatment of light scattered from a
beam (gaussian or flat), is the coherence function. We have seen in the
preceding section that the light scattered off a mirror of roughness f(~x) can
be viewed as emitted by the source

s(~x) = 2kf(~x)φ(~x)
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where φ(~r) is, as above, the incoming optical amplitude. We can consider the
wave generated by this elementary source after diffraction along the distance
d. It can be computed using the diffraction kernel:

Kd(~x) = − i

λd
eik~x

2/2d

so that, if we denote by sd(~y) the propagated wave, we have

sd(~y) =
∫
Kd(~y − ~x).s(~x) d~x

We shall call coherence function of the scattering process, the expectation
value

C(d; ~y, ~y′) = 〈sd(~y).s∗d(~y′)〉 (5.6)

This can be computed as follows. Firstly we have

sd(~y).s
∗
d(~y

′) = 4k2
∫
Kd(~y − ~x)K∗

d(~y
′ − ~x′) f(~x) f(~x′)φ(~x)φ∗(~x′) d~xd~x′

By taking the expectation value, this becomes:

〈sd(~y).s∗d(~y′〉 = 4k2σ2
∫
C(~x− ~x′)Kd(~y − ~x)K∗

d(~y
′ − ~x′)φ(~x)φ∗(~x′) d~xd~x′

after replacing C by its Fourier integral, we get

〈sd(~y).s∗d(~y′〉 =
4k2σ2

4π2

∫
C̃(~p) e−i~p(~x−

~x′)Kd(~y−~x)K∗
d(~y

′−~x′)φ(~x)φ∗(~x′) d~xd~x′ d~p

Now, it can be checked that
∫
Kd(~y − ~x)e−i~p.~xφ(~x) d~x = e−id~p

2/2k e−i~p.~yφd(~y + d~p/k)

so that

C(d; ~y, ~y′) =
ǫ

4π2

∫
C̃(~p) e−i~p.(~y−

~y′)φd(~y + d~p/k)φ∗
d(~y

′ + d~p/k) d~p

where φd is the beam amplitude diffracted at a distance d. Now, it may be
noted that if the distance d is larger than a few m, the coordinate ~y+d~p/k falls
outside the actual beam for values of ~p slightly different from the maximum
~p0 = −k~y/d. This means that the integrand takes non negligible values
only in the small domain where the neigborhood of −k~y/d intersects that



278 CHAPTER 5. SCATTERED LIGHT

of −k~y′/d. Over this small domain, it can be assumed that the function C̃
has very small variations, and that it differs by a very small amount from
the value ~p0 = −k~y/d. We therefore replace C̃(~p) by C̃(~p0) ∼ C̃(~p′0) in the
integral, giving

C(d; ~y, ~y′) =
ǫ

4π2
C̃(~p0)

∫
e−i~p.(~y−

~y′)φd(~y + d~p/k)φ∗
d(~y

′ + d~p/k) d~p

When C(d; ~y, ~y′) takes significant values, ~y and ~y′ are so close together that
we can write equally

C̃(−k~y/d) = C̃(−k~y′/d) = C̃(kθ) =
λ2

2π
p(θ)

where θ is the angle locating the direction of the small domain around ~y and
~y′. It is possible to give a shorter version of the preceding integral. by the
change of variables

~p = ~q − k

2d
(~y + ~y′)

we obtain

C(d; ~y, ~y′) =
ǫλ2

8π3
eik(y

2−y′2)/2d
∫
d~q e−i~q.

~Y φd

(
d

k
~q +

1

2
~Y

)
φ∗
d

(
d

k
~q − 1

2
~Y

)

with ~Y ≡ ~y − ~y′. By substituting the Fourier transforms of the amplitudes,
this is

C(d; ~y, ~y′) =
ǫλ2

8π3
eik(y

2−y′2)/2d×

1

16π4

∫
d~q d~p d~p′ e−i~q.

~Y e−i~p(d~q/k+
~Y /2)φ̃d(~p) e

i~p′(d~q/k−~Y /2)φ̃∗
d(~p

′)

but the Fourier transforms of the progagated amplitudes are equal to the
Fourier transforms of the initial amplitudes, times the propagator

e−idp
2/2k

so that:

C(d; ~y, ~y′) = =
ǫλ2

8π3
eik(y

2−y′2)/2d×

1

16π4

∫
d~q d~p d~p′ e−i~q.(

~Y+(~p−~p′)d/k e−i(~p+
~p′).~Y /2 e−i(p

2−p′2)d/2k φ̃(~p) φ̃∗(~p′)



5.3. THE SCATTERING COHERENCE FUNCTION 279

the ~q integration gives a Dirac function, so that

C(d; ~y, ~y′) =
ǫλ2

8π3
eik(y

2−y′2)/2d×

1

4π2

k2

d2

∫
d~p d~p′ δ(~p′ − ~p− k~Y /d) e−i(~p+

~p′).~Y /2 e−i(p
2−p′2)d/2k φ̃(~p) φ̃∗(~p′)

=
ǫ

8π3d2
eik(y

2−y′2)/2d
∫
d~pφ̃(~p) φ̃∗(~p+ k~Y /d)

which yields the symmetrical expression for the coherence function:

C(d; ~y, ~y′) = ǫ

8π3d2
eik(y

2−y′2)/2d
∫
d~p φ̃(~p− k~Y /2d) φ̃∗(~p+ k~Y /2d) (5.7)

In the case of a fundamental gaussian beam at its waist w0, the explicit
calculation is straightforward. We have

φ̃(~p) =
√
2πw2

0 e
−p2w2

0/4

and consequently

∫
d~p φ̃(~p− k~Y /2d) φ̃∗(~p+ k~Y /2d) = 4π2e−k

2w2
0Y

2/8d2

so that finally

C(d; ~y, ~y′) =
ǫ

2πd2
p(θ) eik(y

2−y′2)/2d e−(~y−~y′)2/2d2θ2g (5.8)

where θg ≡ λ/πw0 is the gaussian angular aperture of the initial beam.
This shows the memory effect of the initial beam even after diffusion and
diffraction.
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Chapter 6

Heating issues

The laser beam circulating through or reflected off the mirrors carries high
light power, especially in the resonant cavities. These mirrors dissipate a
small but non zero rate of this power into heat, increasing their internal tem-
perature. The profile of the beam being sharp (gaussian), the heat generation
is practically localized around the optical axis, and the resulting temperature
field presents gradients. The non uniform temperature field induces firstly
an index field known as a thermal lens. It induces secondly distortions of the
mirror’s surface called thermal aberrations. These effects initiate non linear
processes : the rate of heating depends on the stored light power, the stored
light power depends in turn on the cavities tuning, which in turn depends on
the thermal lensing and aberrations. Methods of simulation for these pro-
cesses need firstly a study of the steady state, then the transient case will be
addressed.

6.1 Heating by dissipation in the coating

Consider a cylindrical mirror receiving the beam of a laser : A fraction ǫ
of the light power is dissipated in the coating, so that there is a source of
heat over one face. If the substrate is crossed by the beam, a fraction of
the power is absorbed per unit of length of the path inside, so that there is
also a source in the bulk. The mirror being suspended in a vacuum by very
thin wires, it cannot appreciably lose heat by conduction nor by convection.
The only way for restoring thermal equilibrium with the surrounding walls
is to radiate excess energy under the form of infrared radiation, according to
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z=h/2

laser beam

z=-h/2

r=a

Figure 6.1: Cylindrical mirror heated by laser beam

the blackbody law. Simple analytical solutions can be found in the case of
axial symmetry. We address the case of surface heating (bulk heating will be
addressed in a coming section). Let z be the coordinate along the symmetry
axis (the optical axis), and r the radial coordinate (see Fig.6.1).

6.1.1 The Fourier equation and the boundary condi-

tions

In a general time dependent situation the heat field obeys the Fourier equa-
tion :

[ρC ∂t −K∆]T (r, z) = p(r) (6.1)

where K is the thermal conductivity (sorry, don’t confuse with the unit K
(Kelvin) of absolute temperature !) , ρ the density of the material , C its
specific heat , and p(r) the density of power deposited in the material .
To be specific, let us give these parameters in the case of silica, a material
frequently used for making mirrors, with the notation used throughout this
chapter, and the values used in numerical applications :
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parameter name value units

ρ density 2202 kgm−3

C Specific heat 745 J kg−1K−1

K Thermal conductivity 1.38 Wm−1K−1

dn/dT Thermal index coeff. -0.87 10−5 K−1

ǫ Dissipation rate (coating) 10−6 dimensionless
β Linear absorption coeff. 10−5 m−1

α Thermal expansion coeff. 5.4 10−7 K−1

Y Young modulus 7.3 1010 Nm−2

σ Poisson ratio 0.17 dimensionless

If we assume the stationary state, in which the radiation losses exactly bal-
ance the incoming power, the heat field obeys the static homogeneous Fourier
equation, and if there is no internal heat sources, this reduces to the Laplace
equation :

∆T (r, z) = 0

We must add to this equation the boundary conditions, namely the balance
of heat fluxes on the limiting faces, according to

n · [F+K∇T ]surf = 0

where F (W.m−2) is the escaping flux, −K∇T the internal flux at boundary
and n the normal. We assume that in case of thermal radiation, the escaping
flux is

[n · F]surf = σ′
[
T 4 − T 4

0

]
surf

where σ′ is related to the Stefan-Boltzmann constant σSB ∼ 5.67 10−8 Wm−2 K−4

that holds for the true blackbody radiation, by a correction (emissivity cor-
rection) taking into account the nature of the material (Please do not confuse
the SB constant σSB with the Poisson ratio σ). T0 is the temperature of the
surrounding wall. σ′ = 0.8 σSB is plausible for SiO2. Let us detail the bound-
ary conditions in the case of a cylindrical body (cf Fig.6.1) :

• On the face z = h/2,

−K∂T

∂z
(r, h/2) = σ′(T 4 − T 4

0 )

. The latter expression is non linear, but we hope, in case of low ab-
sorption, that the temperature excess with respect to room temperature
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will be small. Of course, one must check at the end of the calculation
that :

T − T0 ≪ T0

was a correct assumption, so that it was reasonable to linearize with
respect to T0. Assume T − T0 = δT , this means that

T 4 − T 4
0 ∼ 4T 3

0 δT

It will be understood in what follows, that T is the excess of tempera-
ture caused by the laser beam with respect to T0, so that the boundary
condition becomes

−K∂T

∂z
(r, h/2) = 4σ′T 3

0 T (r, h/2) (6.2)

• On the face z = −h/2, we have a balance of three heat fluxes :

−K∂T

∂z
(r,−h/2) = −4σ′T 3

0 T (r, h/2) + ǫ I(r) (6.3)

where ǫ is the loss rate due to dissipation of light power into heat (a
few ppm). We assume that the incoming beam is a TEM00 wave of half
width w, so that the incoming power flux is (P being the beam power)
:

I(r) =
2P

πw2
e−2r2/w2

Note the change in the sign for the radiative part, and the presence
of an extra surface heat flux generated by absorption in the coating,
represented as a boundary layer.

• On the edge of the cylinder, we find only radiation losses :

−K∂T

∂r
(a, z) = 4σ′T 3

0 T (a, z) (6.4)

6.1.2 Solution as a Dini expansion

In cylindrical coordinates, (still assuming axial symmetry), the Fourier (or
Laplace) equation is

(
∂2r +

1

r
∂r + ∂2z

)
T (r, z) = 0
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A solution of this equation is called harmonic. In cylindrical coordinates,
there exist harmonic functions of the form

T (r, z) = J0(kr)
(
A ekz +B e−kz

)

where k, A, B are arbitrary constants, and the {Jn(z) ; n ∈ Z} the Bessel
functions. It is probably worth to recall at least that

∂xJ0(x) = −J1(x)
(
∂x +

1

x

)
J1(x) = J0(x)

The last boundary condition, expressed by Eq.6.4 reads thus :

K k J1(ka) = 4σ′T 3
0 J0(ka)

or, using a reduced radiation constant χ = 4σ′T 3
0 a/K :

kaJ1(ka)− χJ0(ka) = 0

An equation like the preceding one has an infinite discrete number of solutions
defining the possible values of k. Call {ζn ; n = 1, 2, . . .} the solutions of

ζJ1(ζ)− χJ0(ζ) = 0 (6.5)

The values of k are the kn = ζn/a. The temperature field can finally be
written as an expansion of the type

T (r, z) =
∑

n

(
Ane

knz +Bne
−knz

)
J0(knr)

It is well known from the Sturm-Liouville theorem that the functions {J0(ζnr/a) ; n =
1, 2, . . .} form a complete orthogonal basis for functions defined in the interval
[0, a], having normalization constants cn [20] such that

∫ a

0
J0(ζnr/a)J0(ζn′r/a) r dr =

1

cn
δnn′

with

cn =
2ζ2n

a2(χ2 + ζ2n)J0(ζn)
2
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In particular, the intensity profile can be expanded on this basis :

I(r) =
∑

n

pn J0(ζnr/a) (6.6)

by inverting the latter relation, one finds :

pn = cn

∫ a

0
I(r) J0(ζnr/a) r dr

and substituting the expression of I(r) yields

pn =
2ζ2n

a2(χ2 + ζ2n)J0(ζn)
2

∫ a

0

2P

πw2
J0(ζnr/a) e

−2r2/w2

r dr

In the cylinders used as mirror substrates, the radius is large enough that
the diffraction losses are negligible. This is equivalent to say that in the
preceding integral, the bound a may be replaced by ∞ without changing
appreciably the result. In this case, the result is [20] :

pn =
P

π a2
ζ2n

(ζ2n + χ2)J0(ζn)2
exp

(
−w

2ζ2n
8 a2

)
(6.7)

Then the boundary conditions 6.2 and 6.3 reduce to a linear system
{
(ζn − χ)Γ2

nAn − (ζn + χ)Bn = − ǫpnaΓn/K
(ζn + χ)An − (ζn − χ)Γ2

nBn = 0

where for the sake of brevity, Γn = exp(−ζnh/2a). This gives the constants
An, Bn :

An =
ǫpna

K
e−3ζnh/2a

ζn − χ

(ζn + χ)2 − (ζn − χ)2e−2ζnh/a

Bn =
ǫpna

K
e−ζnh/2a

ζn + χ

(ζn + χ)2 − (ζn − χ)2e−2ζnh/a

The temperature field is now fully determined :

T (r, z) =
∑

n

ǫpna

K
e−ζnh/2a

(ζn − χ)e−ζn(h−z)/a + (ζn + χ)e−ζnz/a

(ζn + χ)2 − (ζn − χ)2e−2ζnh/a
J0(ζnr/a)

(6.8)
The reconstruction of I(r) by expansion on the J0(ζnr/a) allows to determine
the maximum number N of terms to consider for convergence of the above
series. The precision improves very fastly with N . On Fig.6.2 one can com-
pare the exact gaussian intensity profile with formula 6.6 with only 10 terms.
The error is quite negligible for N > 30 (Fig.6.3). Finally the temperature
field is shown on Fig.6.4.
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Figure 6.2: dashed line : Beam intensity profile, solid line : reconstruction
with only 10 Dini terms

6.1.3 Thermal lensing

The first consequence of a temperature field being installed in the bulk ma-
terial is to create an index field according to :

∆n(r, z) =
dn

dT
T (r, z)

where dn/dT is the index temperature coefficient of the material. For Silica
we have dn/dT ∼ −0.87 10−5 K−1. The effect of the index field is to change
the wavefront of a passing optical wave by an extra path, or excess optical
thickness Z(r) :

Z(r) =
dn

dT

∫ h/2

−h/2
T (r, z) dz

With the preceding expression of the temperature field, we find

Z(r) =
dn

dT

∑

n

ǫpna
2

Kζn

1− e−ζnh/a

ζn + χ− (ζn − χ)e−ζnh/a
J0(ζnr/a) (6.9)

Fig.6.5 shows the shape of a plane wavefront after passing through a disk like
the Virgo mirrors. We call thermal lensing this kind of distortion. The effect
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Figure 6.3: Error in the reconstructed intensity profile and order of the Dini
expansion

of thermal lensing is as a first approximation to change the curvature of the
wavefront, like a real lens. We can estimate the curvature taken by a plane
wave after crossing the disk by calculating the nearest paraboloid. The apex
equation of such a paraboloid is z = c r2 + p, and we want to minimize

Q(c, p) =
∫ a

0
W (r)

(
Z(r)− c r2 − p

)2
r dr

where

W (r) =
4

w2
e−2r2/w2

is the gaussian weighting function, exactly as in the treatment of imperfect
mirrors (see preceding chapter). The requirement that the partial derivatives
of Q(c, p) vanish, leads to a normal system having the solution

c =
< r2Z(r) > − < r2 >< Z(r) >

< r4 > − < r2 >2

p = < Z > −c < r2 >

where the weighted average < f > of any function has the definition

< f >≡
∫ a

0
W (r) f(r) r dr
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Figure 6.4: Temperature field in a Virgo mirror for 1W dissipated in the
coating. Hot point : 13.3K

With the weight W (r) we find (assuming w ≪ a) :

< r2 > =
w2

2

< r4 > =
w4

2
so that

< r4 > − < r2 >2 =
w4

4
Let us derive a useful rule for the computation of the parameters c and p.
The equivalent displacement Z(r) being known under the form 6.9

Z(r) =
∑

n

znJ0(ζnr/a)

where the coefficients zn are known by the preceding theory, we find firstly

< J0(ζnr/a) >= e−ζ
2
nw

2/8a2
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Figure 6.5: Thermal phase lens in a a = 17.5 cm, h = 10 cm silica mirror for
1W dissipated in the coating (absolute value)

and

< r2J0(ζnr/a) >=
w2

2

(
1− ζ2w2

8a2

)
e−ζ

2
nw

2/8a2

so that

< r2J0(ζnr/a) > − < r2 >< J0(ζnr/a) >

< r4 > − < r2 >2
= − ζ2n

4a2
e−ζ

2
nw

2/8a2

and finally, the curvature c is :

c = − 1

4a2
∑

n

zn ζ
2
n e

−ζ2nw2/8a2

The mean optical thickness < Z > is

< Z > =
∑

n

zn e
−ζ2nw2/8a2
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Figure 6.6: Thermal lens and its weighted parabolic approximation for 1 W
absorbed in the coating

and the piston :

p =
∑

n

zn (1 + ζ2nw
2/8a2) e−ζ

2
nw

2/8a2

The recipe is thus : take the formula giving the thermal lens Z(r) , then
replace J0(ζnr/a) by −ζ2n exp(−ζ2nw2/8a2)/4a2 and you get the curvature of
the wavefront. These formulas will be exploited also in foregoing calculations
with other coming definitions of zn. We can compare the parabolic fit to the
original thermal lens on Fig.6.6 ; we have espressed it in m and restablished
the sign. For the Virgo parameters, we find a curvature radius of the wave-
front, i.e. the focal length of the lens : Rc = f = 1/2c ∼ 425.5 m.W (Note
that f is inversely proportional to the dissipated power).

A perfect parabolic lensing could be compensated by a suitable matching
of the beam. We could therefore in principle, ignore it. In fact the curvature
is proportional to the absorbed power, which depends in turn of the dissi-
pation rate in the coating. The dissipation rate could easily be different by



292 CHAPTER 6. HEATING ISSUES

-0.04 -0.02  0.00  0.02  0.04
-1.e-06

-5.e-07

0.

 5.e-07

 1.e-06

r [m]

T
he

rm
al

 le
ns

in
g 

an
ha

rm
on

ic
ity

 [
m

/W
]

Figure 6.7: Thermal lens : anharmonicity

a factor of the order of 2 between two mirrors, and it is therefore difficult
to compensate for the two lenses simultaneously. Moreover, the lensing is
not exactly parabolic, and this means that it couples the nominal TEM00

mode with higher order modes, resulting in extra losses for the beam. On
Fig.6.7, the difference between the actual lens and a paraboloid is plot, we
call it anharmonicity by analogy with the potential theory. Concerning the
losses, we can compute the coupling efficiency of the thermal lens between
to matched waves. Consider for instance the incoming wave :

Ψ1 =
2

w
e−r

2/w2

eikr
2/2R1

and an outgoing wave (after passing the lens)

Ψ2 =
2

w
e−r

2/w2

eikr
2/2R2

The two waves have equal w for the lens cannot magnify the beam, but
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different curvature radii. Both are normalized according to
∫ ∞

0
Ψ(r) Ψ(r) r dr = 1

The lens can be expressed as

∆Φ(r) =
r2

2f
+ p+ ǫ(r)

where ǫ(r) is the anharmonic residue. The efficiency of the coupling depends
on the scalar product

γ = < Ψ2,Ψ1e
i∆Φ >

this gives

γ =
4

w2

∫ ∞

0
e−2r2/w2

eik
r2

2
(1/R1+1/f−1/R2) eikp eikǫ(r)

The matching condition is precisely

1

R2

=
1

R1

+
1

f

and if ǫ is much smaller than the wavelength, we have thus

γ = eikp
∫ ∞

0
W (r)

(
1 + ikǫ(r)− k2ǫ2(r)

)
r dr

the mean < ǫ > is zero, so that

γ = 1− k2 < ǫ2 > /2 = 1− k2Q(c, p)/2

where c and p are the optimal values we just found. the square modulus of
γ gives the efficiency :

γ γ = 1− k2 < ǫ2 >

so that the coupling losses are simply

L = 4π2 < ǫ2 > /λ2

. For our a = 0.175 m, h = 0.1 m mirror, we find (numerically) Q(m0, p0) ∼
4.15 10−15 m2/W2. This is

L ∼ 0.14 W−2

Assume ǫ = 1 ppm, Pintracavity = 10 kW, one finds L ∼ 5 ppm. Note that the
losses due to mirror roughness were computed exactly the same way, except
that an extra factor of 4 appeared, due to that special case of reflection, in
which the defects have double weight.
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6.2 Heating by dissipation in the bulk sub-

strate

6.2.1 Temperature field

A slightly different model must be used when we consider the heating process
caused by dissipation of light power by its propagation through an absorbing
medium. Transparent solids as silica have a small but finite linear absorption
rate β, so that as a function of z (the optical axis), the intensity obeys :

I(r, z) = I0(r) e
−βz

where I0 is the lossless solution of Maxwell’s equations. The power dissipated
in the medium per volume unit is therefore at first order in β :

p(r, z) = −
[
dI

dz

]

diss

∼ β I0(r)

We shall neglect diffraction effects inside the medium for the Rayleigh range
of the beam (∼ 1 km) is much larger than the medium thickness (∼ 10 cm),
so that we can consider a heat source distributed in the bulk material, of the
form

p(r) =
2P

πw2
β e−2r2/w2

The heat equation now reads :

−K∆T (r, z) =
2P

πw2
β e−2r2/w2

(6.10)

We know from the coating study that

2P

πw2
e−2r2/w2

=
∑

n

pn J0(ζnr/a)

where the ζn are the discrete family of zeros of an equation similar to 6.5 (in
fact it is the same, as will be seen later), and

pn =
P

πa2
ζ2n

(ζ2n + χ2)J0(ζn)2
e−ζ

2
nw

2/8a2
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In fact, it is easy to guess that the ζn will be exactly the same as in the
coating study. Anyway, eq.6.10 admits a special solution Tspec(r) given by

Tspec(r) =
∑

n

tn J0(ζnr/a)

with

tn =
βP

πK

1

(ζ2n + χ2)J0(ζn)2
e−ζ

2
nw

2/8a2

A general solution of 6.10 requires still a general solution of the homogeneous
heat equation, that can be taken of the form

Tgen eh =
∑

n

An cosh(ζnz/a) J0(ζnr/a)

where the coefficients An are arbitrary. The particular choice of cosh rather
than a combination of exp(−ζnz/a) and exp(ζnz/a) is justified by the symme-
try of the problem : the heat source is independent of z, and the temperature
field must therefore be symmetrical with respect to the meridian plane. The
global temperature field is now :

T (r, z) =
∑

n

(An cosh(ζnz/a) + tn) J0(ζnr/a)

Now the boundary conditions reduce to radiation losses on the faces and on
the edge.

• On the edge

−K ∂T

∂r
(a, z) = 4σ′T 3

0 T (a, z)

and this is the same condition as 6.3. It will be satisfied if the ζn are
the same as in the coating study, as could be foreseen.

• On the face z = h/2 , we have

−K ∂T

∂z
(r, h/2) = 4σ′T 3

0 T (r, h/2)

Owing to the symmetry, the face z = −h/2 gives the same condition.

The last boundary condition determines the An :

An = −tn
χ

ζn sinh(ζnh/2a) + χ cosh(ζnh/2a)
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Figure 6.8: Absorption in the bulk : temperature field. Hot point : 3.2 K
for 1 W dissipated

and the temperature field is now determined :

T (r, z) =
βP

πK

∑

n

[
1 − χ cosh(ζnz/a)

ζn sinh(ζnh/2a) + χ cosh(ζnh/2a)

]
×

× exp[−ζ2nw2/8a2)

(ζ2n + χ2)J0(ζn)2
J0(ζnr/a) (6.11)

The profile of the temperature field is given on Fig.6.8.

6.2.2 Thermal lensing

We now know how to compute the thermal lens :

Z(r) =
dn

dT

∫ h/2

−h/2
T (r, z) dz

this gives :

Z(r) =
dn

dT

βPh

πK

∑

n

[
1 − (2χa/ζnh) sinh(ζnh/2a)

ζn sinh(ζnh/2a) + χ cosh(ζnh/2a)

]
×
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Figure 6.9: Thermal lens and its parabolic approximation (1 W dissipated)-
Bulk absorption

× exp(−ζ2nw2/8a2)

(ζ2n + χ2)J0(ζn)2
J0(ζnr/a)

One sees on Fig.6.9 a plot of the lens profile and of its parabolic best fit,
according to methods developped above. The focal length is

f ∼ 412 m.W

and the losses
L = 0.15 W−2

Note that these results are very similar to those obtained in the case of
coating heating.

6.3 Distortion from coating absorption

An other effect of temperature changes in a solid is its thermal expansion.
Moreover, if the temperature is not uniform (we have seen that this is the
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case when the heat source is the laser beam) stresses are developed inside
causing distortions of the solid. In particular, the mirror reflecting surface is
distorted, and we have to estimate the effect both in the case of the coating
and bulk heating process. In the case of coating absorption, the fact that
the temperature field is harmonic greatly simplifies the solution.

6.3.1 Thermoelastic solution

We first recall the linear thermoelastic equations. The atoms of the distorted
solid are displaced with respect to the reference solid by a displacement vector
~u(~r). The partial derivatives of ~u define a rank 2 tensor Eij(~r) called strain :

Eij(~r) =
1

2
[∂iuj(~r) + ∂jui(~r)]

A generalization of Hooke’s law linking applied force to displacement in the
distortion of a spring, is a linear relation between the stress tensor Θij(~r)
and the strain tensor via a constant rank 4 tensor :

Θij =
∑

k,l

CijklEkl

For isotropic solids (e.g. fused silica) , the elastic tensor reduces to only two
independent components :

Θij = λ δij E + 2µEij

λ and µ are known as the Lam coefficients. Moreover, if a temperature field
T is present, an extra stress arises and this becomes [28]

Θij = δij (λE − νT ) + 2µEij

ν is the stress temperature modulus, and it is related to the thermal expan-
sion coefficient α by :

ν = α(3λ+ 2µ)

The equilibrium equation is :

∂jΘij = 0

In the case of axial symmetry, using cylindrical coordinates, the nonzero
strain components are

Err = ∂rur
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Erz =
1

2
(∂ruz + ∂zur)

Eφφ =
ur
r

Ezz = ∂zuz

the stress/strain relations are





Θrr = −ν T + λE + 2µErr
Θφφ = −ν T + λE + 2µEφφ
Θzz = −ν T + λE + 2µEzz
Θrz = 2µErz

(6.12)

and the equilibrium equation are

{
∂rΘrr + (Θrr −Θφφ)/r + ∂zΘrz = 0
(∂r + 1/r)Θrz + ∂zΘzz = 0

(6.13)

Recall that the mirror is a cylinder of radius a, of thickness h, that the
coordinates are chosen in such a way that r ∈ [0, a] and z ∈ [−h/2, h/2], and
that the coating is located on the z = −h/2 face. One can check that the
equilibrium equation is satisfied by a displacement vector of the form

ur =
ν

2(λ+ µ)

1

r

∫ r

0
T (r′, z) r′ dr′

uz =
ν

2(λ+ µ)

[∫ z

−h/2
T (r, z′) dz′ + Φ(r)

]

provided a suitable determination of the unknown function Φ(r). Remark
that Φ(r) is exactly our target, i.e. the displacement of the surface z = −h/2
holding the reflective coating. All the following derivations aim to eventually
find Φ(r). We first find the strain tensor :

Err(r, z) =
ν

2(λ+ µ)

[
T (r, z)− 1

r2

∫ r

0
T (r′, z) r′ dr′

]

Eφφ(r, z) =
ν

2(λ+ µ)

1

r2

∫ r

0
T (r′, z) r′ dr′

Ezz(r, z) =
ν

2(λ+ µ)
T (r, z)



300 CHAPTER 6. HEATING ISSUES

Erz(r, z) =
ν

4(λ+ µ)

[
Φ′(r) +

∫ z

−h/2

∂T

∂r
(r, z′) dz′ +

∫ r

0

∂T

∂z
(r′, z) r′ dr′

]

The stress tensor is in turn :

Θrr(r, z) = − µν

λ+ µ

1

r2

∫ r

0
T (r′, z) r′ dr′

Θφφ(r, z) = − µν

λ + µ

[
T (r, z)− 1

r2

∫ r

0
T (r′, z) r′ dr′

]

Θzz(r, z) = 0

Θrz(r, z) =
µν

2(λ+ µ)

[
Φ′(r) +

∫ z

−h/2

∂T

∂r
(r, z′) dz′ +

1

r

∫ r

0

∂T

∂z
(r′, z) r′ dr′

]

The equilibrium equations reduce then to :

∂zΘrz(r, z) = 0 (6.14)

(∂r + 1/r)Θrz(r, z) = 0 (6.15)

By substituting the expression of Θrz into eq.6.14 we get

∂Θrz

∂z
(r, z) =

µν

2(λ+ µ)

[
∂T

∂r
(r, z) +

1

r

∫ r

0

∂2T

∂z2
(r′, z) r′ dr′

]
(6.16)

but there is no heat source inside the material, so that T obeys the homoge-
neous Fourier equation ∆T = 0 i.e.

∂2T

∂z2
= − 1

r
∂r

(
r
∂T

∂r

)

so that eq.6.14 is identically satisfied :

∂zΘrz = 0

. Now, we have for the same reason (T being harmonic) :

(∂r + 1/r)Θrz(r, z) =
µν

2(λ+ µ)

[
Φ′′(r) + Φ′(r)/r +

∂T

∂z
(r,−h/2)

]

and we have to choose Φ in such a way that the preceding expression vanishes,
that is

1

r
∂r

(
r
∂Φ

∂r
(r)

)
= − ∂T

∂z
(r,−h/2)
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the solution of which is

Φ(r) = −
∫ r

0

dr′

r′

∫ r′

0

∂T

∂z
(r′′,−h/2) r′′ dr′′ + C ′ ln(r) + C

where C and C ′ are arbitrary constants. Obviously, the regularity of ~u on
the axis requires C ′ = 0. Now the stress component Θrz is explicitly known :

Θrz(r, z) =
µν

2(λ+ µ)

(∫ z

−h/2

∂T

∂r
(r, z′) dz′ +

1

r

∫ r

0

[
∂T

∂z
(r′, z)− ∂T

∂z
(r′,−h/2)

]
r′ dr′

)

This last form makes it clear that Θrz(r,−h/2) = 0, and since it has been
shown that ∂zΘrz = 0, we have in fact simply

Θrz(r, z) = 0

The boundary conditions express the balance of applied forces and torques
at the limiting surfaces. These conditions are here :

Θrr(a, z) = 0

Θrz(a, z) = 0

Θrz(r,±h/2) = 0

Θzz(r,±h/2) = 0

all are identically fulfilled except the first one. It is easy to compute Θrr(a, z).
We recall the expression found in the preceding section for the temperature
field 6.8

T (r, z) =
∑

n

ǫpna

K
e−ζnh/2a

(ζn − χ)e−ζn(h−z)/a + (ζn + χ)e−ζnz/a

(ζn + χ)2 − (ζn − χ)2e−2ζnh/a
J0(ζnr/a)

We have
∫ a

0
J0(ζnr/a) r dr =

a2

ζ2n

∫ ζn

0
J0(x) x dx =

a2

ζ2n
ζnJ1(ζn) =

a2

ζ2n
χJ0(ζn)

where we have used the definition 6.5 of ζn. This gives

Θrr(a, z) = − µν

λ+ µ

ǫPχ

πaK
×
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Figure 6.10: The radial stress Θrr on the edge is a quasi-linear function of z

×
∑

n

e−w
2ζ2n/8a

2

(ζ2n + χ2)J0(ζn)

(ζn − χ)e−ζn(h−z)/a + (ζn + χ)e−ζnz/a

(ζn + χ)2 − (ζn − χ)2e−2ζnh/a

A plot of Θrr(a, z) (see fig.6.10) shows that the dependence on z is quasi
linear, and by adding a stress of the form θrr(a, z) = A + B z, it will be
possible to almost exactly cancel the edge stress. But we have to find a
new solution of the elastic equations satisfying the boundary conditions and
giving a linear θrr(a, z). This is done by the new displacement vector

δur(r, z) =
λ+ 2µ

2µ(3λ+ 2µ)
(Ar +B rz)

δuz(r, z) = − λ

µ(3λ+ 2µ)
(Az +B z2/2) − λ+ 2µ

4µ(3λ+ 2µ)
B r2

some calculation shows that θrz as well as θzz are identically zero, and
θrr(a, z) = A + B z. By suitably chosing the arbitrary constants A and B,
and adding the correction δ~u to ~u, we can remove the global resultant radial
force exerted on the edge and the resultant torque. Then the Saint-Venant
principle tells us that the resulting solution is almost everywhere near the ex-
act solution, except maybe in a small neighborhood of the edge. But we are
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interested in the region ”seen” by the light beam, so that the approximation
should work quite well. By minimizing

Q =
∫ h/2

−h/2
(Θrr(a, z) + A+B z)2 dz

one finds

A = −1

h

∫ h/2

−h/2
Θrr(a, z) dz

and

B = −12

h3

∫ h/2

−h/2
zΘrr(a, z) dz

By substituting the expression of Θrr(a, z), we get

A =
αY ǫPχ

πKh

∑

n

e−w
2ζ2n/8a

2

(ζ2n + χ2)ζnJ0(ζn)

1− e−ζnh/a

ζn + χ− (ζn − χ)e−ζnh/a
(6.17)

and

B = − 12αY ǫPχa

πKh3
∑

n

e−w
2ζ2n/8a

2

(ζ2n + χ2)ζ2nJ0(ζn)

ζnh
2a

(
1− e−ζnh/a

)
− 1 + e−ζnh/a

ζn + χ+ (ζn − χ)e−ζnh/a

(6.18)
It has been found more convenient to use the Young modulus Y and the
Poisson ratio σ instead of the Lam coefficients. The relation is

λ =
Y σ

(1 + σ)(1− 2σ)

µ =
Y

2(1 + σ)

so that
ν

2(λ+ µ)
= α(1 + σ)

and
µν

λ+ µ
= αY

On fig.6.11, one can see the linear function −A − B z superimposed to the
function Θrr(a, z). On the following figure 6.12 one sees the error Θrr(a, z)+
A+Bz. The displacement is now fully determined, and the total displacement
vector field is ~U = ~u + ~δu. The displacement is defined up to a constant
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Figure 6.11: Edge stress function (solid line) and its linear fit (dashed line)

vector. We arbitrarily choose a displacement zero for r = 0 and z = −h/2.
We have thus the special result

uz(r,−h/2) =
α(1 + σ)ǫP

πK

∑

n

ζne
−ζ2nw2/8a2

(ζ2n + χ2)J2
0 (ζn)

ζn + χ− (ζn − χ)e−2ζnh/a

(ζn + χ)2 − (ζn − χ)2e−2ζnh/a
[J0(ζnr/a)− 1] (6.19)

and

δuz(r,−h/2) =
1− σ

2Y
B r2

But the Saint-Venant correction appears very small in the region of optical
interest, as can be seen on Fig6.13.

6.3.2 Surface analysis

As in the case of thermal lensing, we wish to estimate the departure of the
distorted face from an ideally parabolic surface. The apex equation of the
paraboloid being

Ẑ(r) = c r2 + p
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Figure 6.12: Residual edge stress

we find the parameters c (curvature) and p (piston) by minimizing

Q(c, p) =
∫ a

0
W (r)

[
uz(r,−h/2)− c r2 − p

]2

where W (r) is the normalized intensity of the light spot. This yields

c = −α(1 + σ)ǫP

4πa2K

∑

n

ζ3ne
−ζ2nw2/4a2

(ζ2n + χ2)J2
0 (ζn)

ζn + χ− (ζn − χ)e−2ζnh/a

(ζn + χ)2 − (ζn − χ)2e−2ζnh/a
(6.20)

and, with the notation xn = ζ2nw
2/8a2 :

p = −α(1 + σ)ǫP

πK

∑

n

ζne
−xn

(ζ2n + χ2)J2
0 (ζn)

[
1− (1 + xn)e

−xn
]
×

× ζn + χ− (ζn − χ)e−2ζnh/a

(ζn + χ)2 − (ζn − χ)2e−2ζnh/a
(6.21)

for the Virgo corner mirrors (a = 0.175 m, h = 0.1 m and w = 0.02 m), we
find for instance a curvature

c ∼ −8.6 10−5 m−1W−1
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Figure 6.13: Distortion of the reflecting surface. Without S-V corection
(dashed line) and with S-V correction (solid line). The beam half-width was
w = 0.02 m

and for the curvature radius (Rc = 1/2c):

Rc ∼ −5818 m.W

On Fig.6.14, we show the distorted surface in the optically interesting region,
and the nearest paraboloid. This distorted surface couples the TEM00 mode
with higher order modes causing coupling losses. One can evaluate these
coupling losses as customary by

L = 16π2Q(c, p)/λ2

where c and p have their optimal values, defined above. For the Virgo corner
mirrors, one finds the loss rate

L ∼ 3 10−3 /W2

Recall that the displacement being linear with respect to the absorbed power,
the losses are quadratic.
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Figure 6.14: Distortion Z(r) of the reflecting surface and the nearest (inten-
sity weighted) paraboloid

6.4 Distortion caused by bulk absorption

In the case of bulk absorption, the temperature field is not any more har-
monic, and the preceding short method cannot be employed. We are bound
to solve the full system of thermo-elastic equations. Let us recall that the
temperature field is given by :

T (r, z) =
∑

n

tn(z) J0(knr)

where kn ≡ ζn/a. The functions tn(z) are of the form

tn(z) = pn [1− ρn cosh(knz)]

namely,

pn =
βP

πK

exp(−ζ2nw2/8a2)

(χ2 + ζ2n)J
2
0 (ζn)

(6.22)

and
ρn =

χ

ζn sinh(ζnh/2a) + χ cosh(ζnh/2a)
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6.4.1 Thermoelastic solution

We search for a solution of the form
{
ur(r, z) =

∑
nAn(z) J1(knr)

uz(r, z) =
∑
nBn(z) J0(knr)

where An(z) and Bn(z) are unknown functions to be determined according
to the equilibrium equations and the boundary conditions. The strain tensor
components are :

Err(r, z) =
∑
n knAn(z) J

′
1(knr)

Eφφ(r, z) =
∑
n knAn(z) J1(knr)/knr

Ezz(r, z) =
∑
nB

′
n(z) J0(knr)

Erz(r, z) = 1
2

∑
n(A

′
n(z)− knBn(z)) J1(knr)

so that the trace is

E(r, z) =
∑

n

(knAn(z) +B′
n(z)) J0(knr)

The stress tensor is in turn :

Θrr(r, z) =
∑
n [λ(knAn(z) +B′

n(z))− νtn(z)] J0(knr) + 2µ
∑
n knAn(z) J

′
1(knr)

Θφφ(r, z) =
∑
n [λ(knAn(z) +B′

n(z))− νtn(z)] J0(knr) + 2µ
∑
n knAn(z) J1(knr)/knr

Θzz(r, z) =
∑
n [λ(knAn(z) +B′

n(z))− νtn(z)] J0(knr) + 2µ
∑
nB

′
n(z) J0(knr)

Θrz(r, z) = µ
∑
n(A

′
n(z)− knBn(z)) J1(knr)

after some algebra, we find the equilibrium equations :
{
µ [A′′

n − k2nAn]− kn [(λ+ µ) (B′
n + knAn)− νtn] = 0

µ [B′′
n − k2nBn] + ∂z [(λ+ µ)(B′

n + knAn)− νtn] = 0

The first consequence is that
[
∂2z − k2n

]
(A′

n + knBn) = 0

of which the odd solution is

A′
n + knBn = knC

′
n sinh(knz) (6.23)

where C ′
n is an arbitrary constant. The source of heat being independent on

z and the temperature, consequently, an even function of z, we expect An
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being an even function and Bn an odd one. This result (Eq.6.23) allows to
express Bn as a function of An and to insert it in any of the two equilibrium
equations. For instance, inserting in the first, yields

(λ+ 2µ)
[
∂2z − k2n

]
An = (λ+ µ)k2nC

′
n cosh(knz)− νknpn [1− ρn cosh(knz)]

of which the even solution including one more arbitrary constant C ′′
n is :

An(z) = C ′′
n cosh(knz) +

λ+ µ

2(λ+ 2µ)
C ′
n knz sinh(knz) +

+
νpn

kn(λ+ 2µ)
[1 + ρn knz sinh(knz)/2]

then, using 6.23 :

Bn(z) = (C ′
n−C ′′

n) sinh(knz) −
λ+ µ

2(λ+ 2µ)
C ′
n [sinh(knz) + knz cosh(knz)] −

− νpnρn
2kn(λ+ 2µ)

[sinh(knz) + knz cosh(knz)]

The arbitrary constants are determined by the boundary conditions on the
surfaces z = ±h/2. The conditions on the edge r = a are ignored. We
have seen indeed on the preceding case that the needed correction to the
displacement is practically negligible on the central area of the mirror, where
light is actually interacting with the surface. The condition Θrz(r,±h/2) = 0
gives

[
λ+ µ

λ+ 2µ
γn cosh γn −

µ

λ + 2µ
sinh γn

]
C ′
n + 2 sinh γnC

′′
n =

− νpnρn
kn(λ+ 2µ)

(sinh γn + γn cosh γn) (6.24)

and the condition Θzz(r,±h/2) = 0 yields

[
cosh γn −

λ+ µ

λ+ 2µ
γn sinh γn

]
C ′
n − 2 cosh γnC

′′
n =

2νpn
kn(λ+ 2µ)

+
νpnρn

kn(λ+ 2µ)
γn sinh γn
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where, γn ≡ ζnh/2a. This is a linear system in (C ′, C ′′) the solution of which
is is

C ′
n =

νpn
kn(λ+ µ)

[
2 sinh γn

γn + sinh γn cosh γn
− ρn

]

C ′′
n = − νpn

2kn(λ+ µ)

[
2

λ+ 2µ

(λ+ µ)γn cosh γn − µ sinh γn
γn + sinh γn cosh γn

+ ρn

]

Now, it is possible to compute Bn(±h/2) (see 6.22):

Bn(h/2) =
νpn

kn(λ+ µ)
sinh γn

[
sinh γn

γn + sinh γn cosh γn
− ρn

2

]

so that the displacement at z = h/2 (symmetrical to the displacement at
z = −h/2, is

uz(r, h/2) =
ν

λ+ µ

∑

n

pn sinh γn
kn

[
sinh γn

γn + sinh γn cosh γn
− ρn

2

]
J0(knr)

Calling Z(r) the apex of the distorted surface, this is in detail

Z(r) =
α(1 + σ)βPa

πK

∑

n

exp (−ζ2nw2/8a2)

(ζ2n + χ2) ζnJ
2
0 (ζn)

[
2 sinh γn

γn + sinh γn cosh γn
− χ

ζn sinh γn + χ cosh γn

]
J0(ζnr/a)

where we have replaced the Lam coefficients (λ, µ and ν) by the Poisson
ratio σ and the linear thermal expansion coefficient α.

6.4.2 Surface analysis

One can see on Fig.6.15 the shape of the distorted surface in the center re-
gion, with the nearest paraboloid, computed according to the method already
experimented in the previous problems. The curvature radius is

rc = −16388m.W

and the losses
L = 9.3 10−5W−2

These figures are significantly different from the case of coating heating, by
a rough factor of 3 for the focal length, and even by two orders of magnitude
for the losses, due to the nearly parabolic profile.
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Figure 6.15: Distortion of the reflecting surface and the nearest (intensity
weighted) paraboloid

6.5 Heating processes

6.5.1 Transient temperature fields : general method

Up to now we have treated the steady state solution supposed to be reached
at thermal equilibrium between the mirror and the world around the vacuum
vessel. Now we turn to the question of temperature evolution from a given
state to a new one. For instance the mirror is at a uniform temperature T0,
then we switch on the laser, and the temperature begins to increase until the
steady state. In the time dependent case the heat equation is (we keep axial
symmetry) :

[
ρC

∂

∂t
− K∆

]
T (t, r, z) = S1(t, r, z) (6.25)

where S1(t, r, z) refers to the internal source of heat. The boundary con-
ditions remain

−K
[
∂

∂z
T

]

z=−h/2
= −4σ′T 3

0 T (t, r, h/2) + S2(t, r)
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−K
[
∂

∂z
T

]

z=h/2

= 4σ′T 3
0 T (t, r, h/2)

−K
[
∂

∂r
T

]

r=a

= 4σ′T 3
0 T (t, a, z)

where S2(t, r) is the surface source of heat localized on the coating (at z =
−h/2). In the special case of a static source (a constant power laser beam),
the sources are time independent, and a special static solution T∞(r, z) of
6.25 satisfying the boundary conditions is known since the preceding sections.
The general solution of 6.25 is therefore of the form

T (t, r, z) = T∞(r, z) + Ttr(t, r, z)

where Ttr(t, r, z) is the transient part, satisfying the homogeneous heat equa-
tion and the homogeneous boundary conditions (i.e. reduced to outgoing
radiation). The transient temperature can be searched under the separated
form

Ttr(t, r, z) =
∑

n,m

[θ′nm(t) cos(κ
′
mz) + θ′′nm(t) sin(κ

′′
mz)] J0(knr)

where κ′m, κ
′′
m, and kn are arbitrary constants. The functions θ′nm(t) and

θ′′nm(t) must satisfy

∂θ′nm
∂t

+
K

ρC
(k2n + κ

′2
m) θ

′
nm = 0

∂θ′′nm
∂t

+
K

ρC
(k2n + κ

′′2
m ) θ′′nm = 0

whose non exploding solutions are

θ′nm(t) = θ′nm exp

[
− K

ρC
(k2n + κ

′2
m)t

]

θ′′nm(t) = θ′′nm exp

[
− K

ρC
(k2n + κ

′′2
m )t

]

where the θnm are extra arbitrary constants. It is convenient to define the
following time constants :

τ ′nm =
ρC

K(κ′m
2 + k2n)
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τ ′′nm =
ρC

K(κ′′m
2 + k2n)

Now, the boundary conditions impose

kn = ζn/a

where the ζn have the same definition (6.5) as in the whole present chapter,
whereas for satisfying the boundary conditions on the circular faces, κ′m and
κ′′m must respectively verify

κ′m
h

2
sin(κ′mh/2)−

4σ′T 3
0 h

2K
cos(κ′mh/2) = 0

κ′′m
h

2
cos(κ′′mh/2) +

4σ′T 3
0 h

2K
sin(κ′′mh/2) = 0

Let us introduce the new radiation constant χ′ ≡ χh/2a, The first equation
has the form

u sin u− χ′ cosu = 0 (6.26)

It admits an infinite discrete family {um ; m ∈ Z} of solutions, that can be
easily computed, then we have

κ′m = 2um/h

The same way, the equation

v cos v + χ′ sin v = 0 (6.27)

admits an infinite discrete family {vm ; m ∈ Z} of solutions, and

κ′′m = 2vm/h

It is essential to note that the functions {J0(ζnr/a); n ∈ N} form an orthogo-
nal complete basis for functions of r defined on r ∈ [0, a], as already remarked,
and for the same theoretical reasons, the functions {cos(2umz/h); m ∈ N}
and {sin(2vmz/h); m ∈ N} on z ∈ [−h/2, h/2]. For the two last cases, this
is a consequence of the relations 6.26 and 6.27. The orthogonality of the sine
family with respect to cosine is obvious over a symmetrical interval. But
moreover, we have

∫ h/2

−h/2
cos(κ′mz) cos(κ

′
nz) dz = δnmg

′
m
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∫ h/2

−h/2
sin(κ′′mz) sin(κ

′′
nz) dz = δnmg

′′
m

where

g′m =
h

2

[
1 +

sin(2um)

2um

]
, g′′m =

h

2

[
1− sin(2vm)

2vm

]

At this point, all constants are determined except θ′mn and θ′′mn. This is done
depending on the initial condition on the temperature. Assume for instance
the excess temperature is zero at t = 0. The steady state temperature (see
preceding sections) is generally known under the form

T∞(r, z) =
∑

n

tn(z) J0(knr)

requiring T (0, r, z) = 0 yields

∑

n

tn(z) J0(knr) +
∑

n,m

[θ′nm cos(κ′mz) + θ′′nm sin(κ′′mz)] J0(knr) = 0

Owing to the orthogonality of the J0(knr) this is equivalent to

tn(z) +
∑

m

[θ′nm cos(κ′mz) + θ′′nm sin(κ′′mz)] = 0

and now, owing to the orthogonality of the sin(κ′′mz) and the cos(κ′mz), this
gives

θ′nm = − 1

g′m

∫ h/2

−h/2
tn(z) cos(κ

′
mz) dz

θ′′nm = − 1

g′′m

∫ h/2

−h/2
tn(z) sin(κ

′′
mz) dz

which completes the determination. The temperature field is then

T (t, r, z) = −
∑

n,m

[
θ′nm

(
1− e−t/τ

′

nm

)
cos(κ′mz)+

θ′′nm
(
1− e−t/τ

′′

nm

)
sin(κ′′mz)

]
J0(knr) (6.28)
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case of coating absorption

In the case of heating by dissipation in the coating, we have seen that (6.22)
:

tn(z) =
ǫpna

K
e−γn

(ζn − χ)e−2γneζnz/a + (ζn + χ)e−ζnz/a

(ζn + χ)2 − (ζn − χ)2e−4γn

where γn ≡ ζnh/2a. We clearly need the following parameters :

C ′
nm ≡ 1

g′m

∫ h/2

−h/2
cos(κ′mz) exp(±ζnz/a) dz

and

C ′′
nm ≡ ± 1

g′′m

∫ h/2

−h/2
sin(κ′′mz) exp(±ζnz/a) dz

after some algebra, we find

C ′
nm =

2 cos(um)

1 + sin(2um)/2um
eγn

γn + χ′ − (γn − χ′) e−2γn

γ2n + u2m

and

C ′′
nm =

2 sin(vm)

1− sin(2vm)/2vm
eγn

γn + χ′ + (γn − χ′) e−2γn

γ2n + u2m

so that

θ′nm = − ǫhpn
K

cos(um)

1 + sin(2um)/2um

1

γ2n + u2m

θ′′nm =
ǫhpn
K

sin(vm)

1− sin(2vm)/2vm

1

γ2n + v2m

and the temperature field is (by substituting the explicit expression of pn
(6.22)) :

T (t, r, z) =
2ǫP

MC

∑

n,m

ζ2n exp(−ζ2nw2/8a2)

(ζ2n + χ2)J2
0 (ζn)

×

[
cos(um)

1 + sin(2um)/2um
τ ′nm

(
1− e−t/τ

′

nm

)
cos(κ′mz)−

sin(vm)

1− sin(2vm)/2vm
τ ′′nm

(
1− e−t/τ

′′

nm

)
sin(κ′′mz)

]
J0(ζnr/a) (6.29)
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Figure 6.16: Transient thermal lensing in a standard Virgo mirror, case of
coating absorption. Long dashed line : beam profile. Short dashed line :
Stationary case of fig6.6.

where M = ρπa2h is the mass of the mirror. The thermal lens, defined by

Z(t, r) =
dn

dT

∫ h/2

−h/2
T (t, r, z) dz

obviously, only the even part contributes, giving

Z(t, r) =
dn

dT

2ǫPh

MC

∑

n,m

ζ2n exp(−ζ2nw2/8a2)

(ζ2n + χ2)J2
0 (ζn)

×

sin(2um)/2um
1 + sin(2um)/2um

τ ′nm
(
1− e−t/τ

′

nm

)
J0(ζnr/a) (6.30)

On Fig.6.16, one can see the time scale of the evolution of the lens profile.
The steady state is reached after hours. We get the time variable focal length
f(t) defined by

1

f(t)
= − dn

dT

ǫPh

MCa2
∑

n,m

ζ4n exp(−ζ2nw2/4a2)

(ζ2n + χ2)J2
0 (ζn)

×
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Figure 6.17: Evolution of the thermal focal length (heat source on the coat-
ing)

sin(2um)/2um
1 + sin(2um)/2um

τ ′nm
(
1− e−t/τ

′

nm

)
(6.31)

It is interesting to realize that though the heating process takes hours to
reach the steady state, the focal length takes only a few minutes (see Fig.
6.17)to reach its stationary value. This is due to the fact that the temperature
field reaches soon its final profile, and spends further time growing uniformly
without noticeably changing the gradients. The situation is different for the
piston, which follows the evolution of the temperature on a long time scale,
but is automatically corrected by the servo loops.

case of bulk absorption

In this case, as seen above,

tn(z) =
βa2

K

pn
ζ2n

[
1− 2χe−γn cosh(ζnz/a)

χ+ ζn + (χ− ζn)e−2γn

]
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so that, using previous results,

∫ h/2

−h/2
tn(z) cos(κ

′
mz) dz =

βa2h

K

pn
ζ2n

[
sin um
um

− h

2a

χ cosum
u2m + γ2n

]

=
βa2h

K
pn γ

2
n

sin um/um
u2m + γ2n

If we define

θnm =
1

g′m

∫ h/2

−h/2
tn(z) cos(κ

′
mz) dz

we have, after susbtitution of the expression for pn :

θnm =
βPh2

2πKa2
ζ2n exp(−ζ2nw2/8a2)

(χ2 + ζ2n)J
2
0 (ζn)

1

1 + sin(2um)/2um

sin um/um
u2m + γ2n

and finally, using the definition of τ ′nm :

T (t, r, z) =
2βhP

MC

∑

n,m

ζ2n exp(−ζ2nw2/8a2)

(χ2 + ζ2n)J
2
0 (ζn)

×

sin um/um
1 + sin(2um)/2um

τ ′nm
(
1− e−t/τ

′

nm

)
cos(κ′mz) J0(ζnr/a) (6.32)

where M = ρπa2h is the mass of the mirror. The thermal lens is

Z(t, r) =
dn

dT

2βh2P

MC

∑

n,m

ζ2n exp(−ζ2nw2/8a2)

(χ2 + ζ2n)J
2
0 (ζn)

×

(sin um/um)
2

1 + sin(2um)/2um
τ ′nm

(
1− e−t/τ

′

nm

)
J0(ζnr/a) (6.33)

Fig.6.18, show almost exactly the same behavior as in the case of coating
absorption. The focal length is defined by

1

f(t)
= − dn

dT

βh2P

MCa2
∑

n,m

ζ4n exp(−ζ2nw2/4a2)

(χ2 + ζ2n)J
2
0 (ζn)

×

(sin um/um)
2

1 + sin(2um)/2um
τ ′nm

(
1− e−t/τ

′

nm

)
(6.34)

Fig.6.19 is almost identical to Fig.6.17 and the same comments apply.
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Figure 6.18: Transient thermal lensing in a standard Virgo mirror, case of
bulk absorption. Long dashed line : beam profile. Short dashed line : Sta-
tionary case of fig6.9.

6.5.2 Transient thermoelastic deformations

When time enter elasticity problems, the relevant theory is elastodynamics.
The basic elastodynamics equations are the equilibrium equations, modified
in order to take into account inertial forces and generalizing Newton’s second
law :

divΘ = ρ ∂2t u

The boundary conditions remain the same as in elasticity. Considering mo-
tions of matter caused by a constant low rate heating, the velocities of matter
are so small, about one µm in tens of minutes, that we can neglect the iner-
tial forces. The equations return to the form of static elasticity, except that
the time enters as an evolution parameter through temperature. This is the
quasi-static regime. It will be assumed for finding the slow evolution of the
shape of the mirrors faces. We shall start from the expression of the time
dependent temperature field which is never harmonic (even in the case of
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Figure 6.19: Transient thermal focal length (heat source in the bulk)

coating dissipation) so that we must tackle the thermoelastic equations, and
assume that the temperature field is given under the form

T (t, r, z) =
∑

n

tn(t, z) J0(knr)

As in the static study, we search the displacement vector under the form
{
ur(t, r, z) =

∑
nAn(t, z) J1(knr)

uz(t, r, z) =
∑
nBn(t, z) J0(knr)

We know from the study of distortions caused by bulk absorption that the
unknown functions An and Bn obey

(
∂2z − k2n

)
(A′

n + knBn) = 0

In general, there is no symmetry with respect to the meridian plane, so that
we must take the general solution depending on two arbitrary functions of t,
Cn and Dn :

A′
n + knBn = knCn cosh(knz) + knDn sinh(knz) (6.35)
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then we are led to solve the differential equation

(
∂2z − k2n

)
An =

k2n(λ+ µ)

λ+ 2µ
[Cn sinh(knz) +Dn cosh(knz)]−

knνtn
λ+ 2µ

the general solution of which, involving two more arbitrary functions of t is

An(t, z) = Mn sinh(knz) + Pn cosh(knz)+

+
λ+ µ

2(λ+ 2µ)
knz [Cn cosh(knz) +Dn sinh(knz)]−

knνθn
λ+ 2µ

where θn(t, z) represents a special solution of

(
∂2z − k2n

)
θn = tn

then it is possible to deduce Bn(t, z) from 6.35 :

Bn(t, z) = (Cn −Mn) cosh(knz) + (Dn − Pn) sinh(knz) +
λ+ µ

2(λ+ 2µ)
×

[Cn (cosh(knz) + knz sinh(knz)) +Dn (sinh(knz) + knz cosh(knz))] +
νθ′n

λ+ 2µ

The stress tensor is now explicitly defined, depending on 4 families of con-
stants to be determined from the boundary conditions. These boundary
conditions on the circular faces (recall that we neglect conditions on the
edge) give a rank 4 linear system, namely

[
λ+ µ

λ+ 2µ
γn sinh γn −

µ

λ+ 2µ
cosh γn

]
Cn+

[
λ+ µ

λ+ 2µ
γn cosh γn −

µ

λ+ 2µ
sinh γn

]
Dn

+ 2 cosh γnMn + 2 sinh γn Pn =
2νθ′n(t, h/2)

λ+ 2µ
[
λ+ µ

λ+ 2µ
γn sinh γn −

µ

λ+ 2µ
cosh γn

]
Cn−

[
λ+ µ

λ+ 2µ
γn cosh γn −

µ

λ+ 2µ
sinh γn

]
Dn

+ 2 cosh γnMn − 2 sinh γn Pn =
2νθ′n(t,−h/2)

λ+ 2µ
[
sinh γn −

λ+ µ

λ+ 2µ
γn cosh γn

]
Cn +

[
cosh γn −

λ+ µ

λ+ 2µ
γn sinh γn

]
Dn
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− 2 sinh γnMn − 2 cosh γn Pn = −2νknθ(t, h/2)

λ+ 2µ

−
[
sinh γn −

λ+ µ

λ+ 2µ
γn cosh γn

]
Cn +

[
cosh γn −

λ+ µ

λ+ 2µ
γn sinh γn

]
Dn

2 sinh γnMn − 2 cosh γn Pn = −2νknθn(t,−h/2)
λ+ 2µ

where as usual, γn ≡ ζnh/2a. After solving the system and some tedious but
elementary algebra, one can express the displacement amplitude :

Bn(t,−h/2) =
ν

λ+ µ

cosh γn
sinh(γn) cosh(γn)− γn

[sinh γne
′
n(t)− cosh γnkno(t)]−

ν

λ+ µ

sinh γn
sinh(γn) cosh(γn) + γn

[cosh γno
′
n(t)− sinh γnkne(t)]

where we have introduced the even and odd parts of the temperature field
and its gradients :

en(t) =
1

2
[θn(t, h/2) + θn(t,−h/2)]

on(t) =
1

2
[θn(t, h/2)− θn(t,−h/2)]

e′n(t) =
1

2
[θ′n(t, h/2) + θ′n(t,−h/2)]

o′n(t) =
1

2
[θ′n(t, h/2)− θ′n(t,−h/2)]

Then the shape Z(t, r) of the mirror’s surface (at z = −h/2) is

Z(t, r) =
∑

n

Bn(t,−h/2) Jn(ζnr/a)

case of coating absorption

The time dependent temperature field has been derived in a preceding sec-
tion. In the case of absorption in the coating, we found

T (t, r, z) =
4ǫP

MC

∑

n,m

ζ2n exp(−ζ2nw2/8a2)

(ζ2n + χ2)J2
0 (ζn)

×
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[
cos(um)

1 + sin(2um)/2um
τ ′nm

(
1− e−t/τ

′

nm

)
cos(κ′mz)−

sin(vm)

1− sin(2vm)/2vm
τ ′′nm

(
1− e−t/τ

′′

nm

)
sin(κ′′mz)

]
J0(ζnr/a) (6.36)

using the preceding principles gives the apex equation (6.22) :

Z(t, r) = − ǫPα(1 + σ)h2

πKa2
×

∑

n,m

pn

{
sinh γn (χ

′ cosh γn + γn sinh γn)

sinh γn cosh γn + γn

[
cos2 um

1 + sin(2um)/2um

1− exp(−t/τ ′nm)
(u2m + γ2n)

2

]
+

cosh γn (χ
′ sinh γn + γn cosh γn)

sinh γn cosh γn − γn

[
sin2 vm

1− sin(2vm)/2vm

1− exp(−t/τ ′′nm)
(v2m + γ2n)

2

]}
J0(ζnr/a)

case of bulk absorption

In this case, the temperature field is, according to the previous section,

T (t, r, z) =
2βhP

MC

∑

n,m

ζ2n exp(−ζ2nw2/8a2)

(χ2 + ζ2n)J
2
0 (ζn)

×

sin um/um
1 + sin(2um)/2um

τ ′nm
(
1− e−t/τ

′

nm

)
cos(κ′mz) J0(ζnr/a)

and the corresponding apex equation for the time-evoluting surface is

Z(t, r) = −βhPα(1 + σ)h2

2πKa2
∑

n,m

pn
sinh γn (χ

′ cosh γn + γn sinh γn)

sinh γn cosh γn + γn

sin(2um)/2um
1 + sin(2um)/2um

1− exp(−t/τ ′nm)
(u2m + γ2n)

2
J0(ζnr/a)

6.6 Thermoelastic coupling : Coating absorp-

tion

Deformation of the wavefront after reflection on a mirror due either to ther-
mal lensing or to distortion of the reflecting coating obviously affect the
tuning of cavities involving such temperature sensitive mirrors. The tuning
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affects, as a feedback loop, the stored power and thus the heating rate of the
mirrors. We are thus faced with the question of time varying power fluxes
on mirrors. The first step is to study the time dependent temperature field,
and the resulting dynamical thermal lens, the second step is to derive the
dynamical distortion of the reflecting face.

6.6.1 Dynamical temperature

Temperature field

We assume here an incoming optical beam having for any reason a time
varying integrated power. The causes may be technological (an unperfect
power stabilization) or fundamental : The absorbed power fluctuates due to
shot noise, and the situation is equivalent to a varying power flux. Let us
firstly evaluate the result from a coating absorption. With no internal source
of heat, The Fourier-heat equation reads:

[ρC∂t −K∆] T (t, r, z) = 0

Let us recall that C is the specific heat of the material, K its thermal con-
ductivity, and ρ its density. We take the time-Fourier transform:

[
∆+ i

ωρC

K

]
T (ω, r, z) = 0 (6.37)

We separate the space variable by taking

T (ω, r, z) = t(ω, z)J0(kr)

where J0 is the Bessel function, and k an arbitrary constant. Eq.6.37 becomes

[
∂2z − κ2

]
t(ω, z) = 0

where

κ =

√

k2 − i
ωρC

K

The general solution is:

t(ω, z) = θ′(ω) exp(−κz) + θ′′(ω) exp(κz)
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where θ′ and θ′′ are two arbitrary functions. We have now a solution of
Eq.6.37 under the form:

T (ω, r, z) = [θ′(ω) exp(−κz) + θ′′(ω) exp(κz)] J0(kr)

The various arbitrary constants and functions can now be determined by the
boundary conditions as usual. We take the coordinates as follows: The radial
coordinate is such that 0 ≤ r ≤ a (a is the radius of the cylindrical mirror),
the axial coordinate is such that 0 ≤ z ≤ h (h is the thickness of the mirror).
The absorbing coating is assumed at z = 0. We firstly address the condition
of an outgoing radiating heat flux off the circular edge (r = a). This yields:

−K∂T

∂r
(ω, a, z) = 4σ′T 3

0 T (ω, a, z)

The z dependent factor cancels out from the equation, and we are left with

KkJ1(ka) = 4σ′T 3
0 J0(ka)

or, by setting ka = ζ and χ = 4σ′T 3
0 a/K:

ζJ1(ζ)− χJ0(ζ) = 0 (6.38)

An equation like 6.38 has an infinite family of discrete solutions we note
{ζn, n = 1, 2, ...}. A consequence of this quantization is that now, the family
of functions J0(ζnr/a) form an othonormal and closed family of functions on
which any reasonably behaviored function (for instance an optical intensity)
can be expanded. We have namely:

∫ a

0
J0(ζnr/a) J0(ζmr/a) r dr =

a2(χ2 + ζ2n)J
2
0 (ζn)

2ζ2n
δnm

(see for instance [20] p.485, formula 11.4.5). We shall therefore consider the
solution of Eq.6.37 as a sum over all indices n:

T (ω, r, z) =
∑

n

[θ′n(ω) exp(−κnz) + θ′′n(ω) exp(κnz)] J0(ζnr/a) (6.39)

where

κn =

√
ζ2n
a2

− i
ωρC

K
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Now we can address the boundary condition on the face z = 0:

−K∂T

∂z
(ω, r, 0) = − 4σ′T 3

0 T (ω, r, 0) + I(ω, r)

Where I(ω, r) is the Fourier transform of the incoming absorbed intensity
flow on the absorbing face. p(ω, r) can be expanded in a Dini series:

I(ω, r) =
P (ω)

2πa2
∑

n

pnJ0(ζnr/a)

where P (ω) refers to the integrated absorbed power flow. The boundary
condition is now:

κnK(θ′n − θ′′n) = P (ω)pn/2πa
2 − 4σ′T 3

0 (θ
′
n + θ′′n)

The boundary condition on the face z = h is simply:

κnK(θ′ne
−γn − θ′′ne

γn) = 4σ′T 3
0 (θ

′
ne

−γn + θ′′ne
γn)

where γn ≡ κnh. By introducing the constant

χ′ ≡ 4σ′T 3
0 h/K

we get the system:
{
(γn + χ′)θ′n − (γn − χ′)θ′′n = P (ω)pnh/2πKa

2

(γn − χ′) e−γn θ′n − (γn + χ′) eγn θ′′n = 0
(6.40)

so that the solution is now fully determined, and quite analogous to the one
obtained in the static domain, except that now some quantities are complex.
We have (with 6.22) :

T (ω, r, z) =
P (ω)h

2πKa2
∑

n

pn
(γn + χ′)e−κnz + (γn − χ′)eκn(z−2h)

(γn + χ′)2 − (γn − χ′)2 e−2γn
J0(ζnr/a)

(6.41)
In the case of a gaussian beam of half width w, we have:

I(ω, r) =
2P (ω)

πw2
exp(−2r2/w2)

We get:

pn,gauss =
2ζ2n

(χ2 + ζ2n)J
2
0 (ζn)

exp(−w2ζ2n/8a
2)
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so that the solution corresponding to a gaussian beam is explicitly:

TGauss(ω, r, z) =
P (ω)h

πa2K

∑

n

ζ2n exp(−w2ζ2n/8a
2)

(χ2 + ζ2n)J
2
0 (ζn)

× (6.42)

× (γn + χ′)e−κnz + (γn − χ′)eκn(z−2h)

(γn + χ′)2 − (γn − χ′)2 e−2γn
J0(ζnr/a)

In the case of an ideally flat beam of half width b, we have:

I(r) =

{
P (ω)/πb2 (r ≤ b)
0 otherwise

so that

pn,flat =
4aζn J1(ζnb/a)

b(χ2 + ζ2n)J
2
0 (ζn)

and the solution is explicitly:

TFlat(ω, r, z) =
2P (ω)h

πabK

∑

n

ζn J1(ζnb/a)

(χ2 + ζ2n)J
2
0 (ζn)

× (6.43)

× (γn + χ′)e−κnz + (γn − χ′)eκn(z−2h)

(γn + χ′)2 − (γn − χ′)2 e−2γn
J0(ζnr/a)

The temperature field, at frequencies higher than 1 Hz, is significant only
in the close neighborhood of the hot spot. See on Fig.6.20 the distribution
of the transfer function |T |/P (ω) for f = 0.1 Hz. and on Fig.6.21 the same
for 1 Hz. Moreover, as can be seen, the temperature field tends to a pure
skin effect, as the frequency increases. We can see the results for an ideally
flat mode on Figs.6.22, 6.23. We already see that the dynamic temperature
field has a much lower amplitude in the case of a flat beam.

Thermal lens

The first effect of the varying temperature field is to create a variable thermal
lensing. The apex equation Z(ω, r) giving the lens profile is obtained by
integrating the temperature along the optical path. This is:

Z(ω, r) =
dn

dT

∫ h

0
T (ω, r, z) dz



328 CHAPTER 6. HEATING ISSUES

Where dn/dT is the temperature refractive index coefficient. This gives (with
the definition (6.22) ):

Z(ω, r) =
dn

dT

h2P (ω)

2πKa2
∑

n

pn(1− e−γn)

γn [γn + χ′ − (γn − χ′)e−γn ]
J0(ζnr/a) (6.44)

We can finally address the question of effective length variations. The beam
that crosses the mirror substrate undergoes a global length change, as seen
in apreceding chapter, given by:

Z(ω) = 2π
∫ ∞

0
Z(ω, r) I(r) r dr

where I(r) is the normalized intensity profile of the beam. This results here
in:

Z(ω) =
dn

dT

h2P (ω)

4πKa2
∑

n

p2n(1− e−γn)(χ2 + ζ2n)J0(ζn)
2

γn [γn + χ′ − (γn − χ′)e−γn ] ζ2n
(6.45)

If we interpret P (ω) as the spectral density of absorbed power fluctuations,
and Z(ω) as the spectral density of path length fluctuations, we see that the
two SD are related by the transfer function:

F (ω) =
dn

dT

h2

4πKa2
∑

n

p2n(1− e−γn)(χ2 + ζ2n)J0(ζn)
2

γn [γn + χ′ − (γn − χ′)e−γn ] ζ2n

On Fig.6.24, one can see the frequency dependence of the modulus transfer
function. This dependence is clearly in 1/f for frequencies larger than a
fraction of a Hz, the TF is much lower for a flat beam. One sees moreover
that the knee frequency is different for the two types of mode. or a gaussian
beam of radius w = 2 cm, it is:

F (f) ∼ 6.7 10−10

f
m/absorbedW.

while for a flat beam of radius b = 10 cm:

F (f) ∼ 2.7 10−11

f
m/absorbedW.
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If we assume the power fluctuations caused by the shot noise (the power is
absorbed by quanta in the coating), the spectral density of absorbed power
fluctuation is given by:

ǫP (ω) =
√
2ǫP0hPν

where P0 is the nominal power of the incoming beam (even highly stable!),
and ǫ the losses in the mirror due to thermal dissipation. This allows to give
an order of magnitude for the optical path fluctuations caused by the shot
noise. We assume the Silica parameters already given, and a power of the
order of magnitude of that stored in the long cavities, i.e. 20 kW, coating
thermal losses of about 1 ppm:

Z(f) ∼ 4 10−20

f
m.Hz−1/2

This represents the optical path fluctuations by passing for instance through
the Fabry-Perot input mirrors. This is negligible in the present configura-
tion of Virgo, but should be reexamined in an advanced detector with high
recycled power.

Asymptotic solution

The exact model presented above can be hugely simplified in some realistic
cases. If we consider the parameters

κn =

√
ζ2n
a2

− i
ωρC

K

we see that in general, the second imaginary contribution will be much larger
than the real one. Namely, even for a frequency of 10 Hz, we have

ωρCa2

K
∼ 2.3 105

which is to be compared with ζ2n ∼ n2π2. If the pn are rapidly decreasing
(as in the case of a gaussian beam), the index at which the real contribution
becomes non negligible compared to the imaginary, is never reached, and we
can write:

κn = κ =

√

−i ωρC
K

= k(1− i)
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and the same way
γn = γ = kh(1− i)

where k ≡
√
ωρC/2K. Expressions like exp(−κh) vanish, and we have sim-

ply, instead of 6.41:

T (ω, r, z) =
P (ω)h

2πKa2
∑

n

pn
exp(−κz)

γ
J0(ζnr/a) (6.46)

and due to the fact that

I(r) =
P (ω)

2πa2
∑

n

pnJ0(ζnr/a)

we have finally

Tasymp(ω, r, z) =
1

Kκ
I(r)e−κz (6.47)

Recall that I(r) is the absorbed intensity profile. Numerical tests show that
there is no difference between 6.41 and 6.47 in the case of a gaussian beam.
In the case of an ideally flat beam, there are some differences due to the weak
decreasing rate of the pn in this case, but the accuracy is sufficient for further
purposes. A simplified version of the thermal lens immediately follows:

Z(ω, r) =
dn

dT

1

Kκ2
I(r)

For the effective displacement:

Z(ω) =
dn

dT

1

Kκ2

∫
I(r)I0(r)

2r dr dφ

where I0(r) is the same intensity profile, but normalized to 1 W. in the case
of a gaussian beam of half-width w, we have:

∫
I0,Gauss(r)

2r dr dφ =
1

πw2

so that

Z(ω) = i
dn

dT

P (ω)

πw2K ρCω
(6.48)

and we see explicitly the dependence in 1/f , whereas in the case of a flat
beam of radius b, we have

∫
IFlat(r)

2r dr dφ =
1

πb2

so that the formula is the same with w replaced by b, and we see that the
optical path fluctuations are reduced by a factor of (w/b)2.
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6.6.2 Dynamical thermal surface distortions

The obvious other effect of a fluctuating temperature field in the substrate is
to induce fluctuating distortions in the bulk, resulting in surface flcutuations,
and consequently to a fluctuation of the effective position of the mirror. We
consider again the elastodynamics equation:

divΘ = ρ ∂2t u

We take as usual the displacement vector under the form (after a Fourier
transform) : {

ur(ω, r, z) =
∑
nAn(ω, z) J1(knr)

uz(ω, r, z) =
∑
nBn(ω, z) J0(knr)

The temperature field being given under the form

T (ω, r, z) =
∑

n

tn(ω, z) J0(knr)

The elastodynamics equations reduce to
[
µ
(
∂2z − k2n

)
+ ρω2

]
An − kn [(λ+ µ)(∂zBn + knAn)− νtn] = 0 (6.49)

[
µ
(
∂2z − k2n

)
+ ρω2

]
Bn + ∂z [(λ+ µ)(∂zBn + knAn)− νtn] = 0 (6.50)

from what we get
(
∂2z − k2n + ρω2/µ

)
(∂zAn + knBn) = 0

We have seen in the preceding section that even for frequencies as low as a
few Hz, the temperature field is negligible outside a thin neighborhood of the
beam spot. We shall therefore consider the mirror in this regime, as an infi-
nite medium. We assume the displacement vector to decrease exponentially,
and we take the solution of the preceding equation as:

∂zAn + knBn = kMn e
−κT,nz

where

κT,n =

√
k2n −

ρω2

µ

is the transverse elastic wave vector. We have thus:

Bn = Mn e
−κT,nz − ∂zAn

kn
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and by substituting in 6.49 we obtain:

[
(λ+ 2µ)

(
∂2z − k2n

)
+ ρω2

]
An = −kn κT,n (λ+µ)Mn e

−κT,nz−kνtn (6.51)

The solution of which is:

An = Qn e
−κL,nz − kn κT,n(λ+ µ)

(λ+ 2µ)(κ2T,n − κ2L,n)
Mn e

−κT,nz − knνθn
λ+ 2µ

(6.52)

where

κL,n =

√
k2n −

ρω2

λ+ 2µ

is the longitudinal elastic wave vector. But

κ2T,n − κ2L,n = −ρω2 λ+ µ

µ(λ+ 2µ)

so that:

An = Qn e
−κL,nz +

κT,n
2knXn

Mne
−κT,nz − knνθn

λ+ 2µ
(6.53)

with the notation

Xn ≡ ρω2

2k2nµ

Having An, we can calculate Bn:

Bn =
κL,n
kn

Qn e
−κL,nz +

1

2Xn
Mn e

−κT,nz +
ν∂zθn
λ+ 2µ

(6.54)

The medium being assumed infinite, the only boundary conditions are the
vanishing of the axial pressure on the heated surface, i.e.:

Θrz(ω, r, z = 0) = Θzz(ω, r, z = 0) = 0 (6.55)

this leads to two equations allowing to determine the Qn and the Mn. We
have

Θn,rz = µ(∂zAn − knBn)

and

Θn,zz = −νtn + λknAn + (λ+ 2µ)∂zBn
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We get the system:

{ κT,n

2knXn
Mn + (1−Xn)Qn = ν

λ+2µ
(1−Xn)knθn(0)

1−Xn

2Xn
Mn +

κL,n

kn
Qn = − ν

λ+2µ
kn∂zθn(0)

(6.56)

The solution of which is:

Mn =
2νXn(1−Xn)

λ+ 2µ

∂zθn(0) + κL,nθn(0)

κL,nκT,n/k2n − (1−Xn)2
(6.57)

and

Qn = − ν

λ+ 2µ

κT,n

kn
∂zθn(0) + (1−Xn)

2knθn(0)

κL,nκT,n/k2n − (1−Xn)2
(6.58)

Our target is the displacement of the surface, or in other words the function

∑

n

Bn(ω, z = 0)J0(knr)

We have:

Bn(ω, 0) =
1

2Xn
Mn +

κL,n
kn

Qn +
ν

λ+ 2µ
∂zθn(0)

by substituting the values found for the Qn and the Mn, this is, after some
algebra:

Bn(ω, 0) =
ν

λ+ 2µ

Xn(1−Xn) [∂zθn(0) + κL,nθn(0)]

κL,nκT,n/k2n − (1−Xn)2
(6.59)

Let us now consider some figures. It is easily seen that the parameters Xn

are very small in realistic cases. Recall that

Xn =
ρω2a2

2µζ2n

The largest Xn is obviously X1, in which ζ1 ∼ 1. For the silica parameters,
at a frequency of 10 Hz, we have

X1 ∼ 4 10−6

it is therefore quite allowed to compute Bn at the lowest order in Xn. We
have:

κL,nκT,n/k
2
n − (1−Xn)

2 = Xn
λ+ µ

λ+ 2µ
+ O(X2

n)
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so that:
Bn(ω, 0) =

ν

λ+ µ
[∂zθn(0) + κL,nθn(0)] (6.60)

Now, if we introduce the temperature field found in the preceding section, in
the asymptotic regime:

tn(ω, z) =
P (ω)h

2πKa2
e−κnz

γn + χ′ pn

we have

θn(ω, z) =
P (ω)h

2πKa2
e−κnz

γn + χ′
1

κ2n − κ2L,n
pn

so that

∂zθn(0) + κL,nθn(0) = − P (ω)h

2πKa2
1

γn + χ′
1

κn + κL,n
pn

Recall now that the heat wave vector κn is very large compared to the elastical
ones. We have namely:

κL,n/κn ∼ 4 10−6 ζ
2
n

f

By keeping only the leading terms, we obtain:

Bn(ω, 0) = −i ν

λ+ µ

P (ω)

2πa2ρCω
pn

If we express this in terms of the linear dilatation coefficient α and the Poisson
ratio σ, we have:

B(ω, 0) = −i α(1 + σ)P (ω)

πa2ρCω
pn (6.61)

and finally, for the surface apex equation:

Z(ω, r) = −i 2α(1 + σ)P (ω)

ρCω
I(r)

where I(r) is the absorbed intensity. The surface distortion is thus propor-
tional to the temperature field. For the effective displacement, we have:

Z(ω) =
∫
Z(ω, r) I(r) r dr dφ
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or

Z(ω) = − 2iα(1 + σ)P (ω)

ρCω

∫
I(ω, r)2r dr dφ (6.62)

For a gaussian beam of half-width w, the transfer function from the power
variations to the mirror displacement is:

Z(ω)/P (ω) = − 2iα(1 + σ)

πw2ρCω
(6.63)

to be specific, in the case of silica, for w ∼ 2 cm, this is

Z(f)/P (f) ∼ 2 10−10

f
m/W

In the case of a flat beam of radius b, the formula is the same, with w replaced
by b.

6.7 Thermoelastic coupling : Bulk absorp-

tion

The same work can be carried out in the case where the incident power is
dissipated in the bulk material. As usual, we get a temperature field which
generates a thermal lens and a distortion of the solid. We follow the same
scheme as in the preceding section.

6.7.1 Dynamical temperature

Temperature field

We again assume an incoming light beam of power P (ω, z) (either a Fourier
component or a spectral density), and normalized intensity profile I(r). As
usual in this chapter, the mirror is assumed to have a radius a and a thickness
h. The radial coordinate is r ≤ a, and the axial coordinate is −h/2 ≤ z ≤
h/2. The beam is weakly absorbed during its crossing the mirror substrate,
so that its intensity is assumed constant with respect to z : P (ω, z) = P (ω).
We have thus a new definition of the axial coordinate, in order to benefit
from the symmetry of the problem. The intensity being constant along z,
the result is that the temperature field will be symmetrical with respect to
z. As usual, the normalized intensity profile can be expanded on the basis



336 CHAPTER 6. HEATING ISSUES

of the Bessel functions J0(knz), where the family of constants kn are to be
determined. We have:

I(r) =
1

2πa2
∑

n

pnJ0(knr)

If we note T (ω, r, z) the temperature field, it obeys the inhomogeneous Fourier-
heat equation:

[iωρC −K∆]T (ω, r, z) = βP (ω)I(r) (6.64)

where β is as usual the linear absorption coefficient (m−1). In order to
separate the variables, we can write:

T (ω, r, z) =
∑

n

tn(ω, z) J0(knr)

where the functions tn(ω, z) remain to be determined. We have exchanged
the partial differential equation for a set of differential equations:

(∂2z − κ2n)tn(ω, z) = − βP (ω)

2πKa2
pn (6.65)

where
κ =

√
k2n − iρCω/K

The z-symmetrical solution is obviously:

tn(z) = An cosh(κnz) +
βP (ω)

2πKa2κ2n
pn (6.66)

and the arbitrary constants An are to be determined by the boundary con-
ditions. These conditions are the vanishing of heat flows on the faces and on
the edge. On the edge, we get the condition

−K ∂T

∂r
= 4σ′T 3

0 T

(the notations are the same as throughout all this chapter). This gives the
same equation as in the preceding section and determines the kn, namely:

kn = ζn/a

where the ζn are the zeroes of the equation:

ζJ1(ζ)− χJ0(ζ) = 0 (χ ≡ 4σ′T 3
0 a/K)
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so that the pn are the same as in all preceding sections. Now the conditions
on each circular faces reduce, thanks to symmetry to one condition on the
face z = h/2:

−K ∂T

∂z
= 4σ′T 3

0 T

and the result determines the An:

An(ω) = − χ′′βP (ω)pn
2πKκ2na

2

1

γn sinh γn + χ′ cosh γn
(6.67)

where the notation being:

γn ≡ κnh/2 , χ′′ ≡ χh/2a

And finally, the temperature field is:

T (ω, r, z) =
βP (ω)

2πKa2
∑

n

pn
κ2n

[
1 − χ′′ cosh(κnz)

γn sinh γn + χ′′ cosh γn

]
J0(ζnr/a)

(6.68)
Again, we note that for frequencies larger than a few Hz, the κn are almost
all equal:

κn ∼
√
−iωCρ/K = κ ⇒ γn ∼ γ ≡ κh/2

so that the temperature field reproduces the same profile as the beam inten-
sity:

T (ω, r, z) ∼ βP (ω)

Kκ2

[
1 − χ′′ cosh(κz)

γ sinh γ + χ′′ cosh γ

]
I(r)

Thermal lens

By integrating along z, we find the thermal lens:

Z(ω, r) =
dn

dT

βP (ω)h

Kκ2

[
1 − χ′′ sinh γ

γ(γ sinh γ + χ′′ cosh γ)

]
I(r) (6.69)

or simply, owing to the fact that γ ≫ 1:

Z(ω, r) =
dn

dT

βP (ω)h

ρCω
I(r) (6.70)
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The effective length of the path in the substrate is as usual the average of
the thermal lens weighted by the intensity profile:

Z(ω) =
∫
I(r)Z(ω, r) r dr dφ (6.71)

which gives:

Z(ω) = i
dn

dT

βP (ω)h

πw2ρCω
(6.72)

This is identical to eq.6.48, which shows that for equal absorbed power in
the coating and in the bulk, the two contributions to thermal lensings are
equal. in the case of a gaussian beam of half-width w. In the case of a flat
beam of radius b, the formula is the same, with w replaced by b. In the case
of the Silica parameters, the transfer function is:

Z(ω)/βhP (ω) ∼ 6.7 10−10

[
1Hz

f

]
m/absorbedW

6.7.2 Dynamical thermal distortions

General solution

We have to carry out the same calculations as in the coating absorption
case, except that the definition of pm is changed, and that the symmetry is
different. In the coating absorption case, the temperature field was localized
in the neighborhood of the hot spot. Now, the temperature field extends
throughout the mirror. We take the same coordinate system as above, and
write the displacement vector as:

ur(ω, r, z) =
∑

n

An(ω, z)J1(knr) (6.73)

and

uz(ω, r, z) =
∑

n

Bn(ω, z)J0(knr)

where An(ω, z) is assumed an even function of z, andBn(ω, z) an odd function
of z. The temperature field is assumed expanded as:

T (ω, r, z) =
∑

n

tn(ω, z) J0(knz)
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In all the following calculations, the kn are the same as in the preceding
section. The elastodynamic equations are identical to eq.6.49 and 6.50. We
find again that:

(∂2z − κ2T,n)(∂zAn + knBn) = 0

and we choose the odd solution:

∂zAn + knBn = kQn sinh(κT,nz) (6.74)

and by substituting in eq.6.49, we get:

(∂2z − κ2L,n)An =
kκT,n(λ+ µ)

(λ+ 2µ)(κ2T,n − κ2L,n)
Qn cosh(κT,nz)−

knνtn
λ+ 2µ

(6.75)

By using again the notation Xn ≡ ρω2/2k2nµ, and taking the even solution,
we get:

An = Mn cosh(κL,nz)−
κT,n

2knXn

Qn cosh(κT,nz)−
knνθn
λ+ 2µ

(6.76)

and, owing to eq.6.74, this gives in turn:

Bn = −κL,n
kn

Mn sinh(κL,nz) +
1

2Xn
Qn sinh(κT,nz) +

ν∂zθn
λ+ 2µ

(6.77)

where θ(ω, z) is assumed a particular solution of

(∂2z − κ2L,n)θn = t

We have seen that the temperature field, in practice, for frequencies higher
than a few Hz, has the same profile as the beam’s intensity. We therefore
consider only boundary conditions on the two circular faces of the mirror
(infinite slab of finite width), and due to symmetry, there are only two equa-
tions, allowing to determine the Qn and the Mn. The condition

Θrz = 0 (z = ±h/2)

yields the equation:

κL,n
kn

Mn sinh φL,n − 1−Xn

2Xn
Qn sinh φT,n =

ν∂zθn(h/2)

λ+ 2µ
(6.78)
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and the condition
Θzz = 0 (z = ±h/2)

yields the equation

(1−Xn)Mn coshφL,n −
κT,n

2knXn

Qn cosh φT,n = (1−Xn)
knνθn(h/2)

λ+ 2µ
(6.79)

with the notation φL,T,n ≡ κT,L,nh/2. The solution of the system (6.78,6.79)
is:

Mn =
ν

(λ+ 2µ)Dn

[
κT,n
kn

coshφT,nθ
′
n − (1−Xn)

2 sinhφT,n knθn

]
(6.80)

(we have written θ′n for ∂zθn(h/2), and θn for θn(h/2) ) we have also set:

Dn =
κT,nκL,n
k2n

sinh φL,n cosh φT,n − (1−Xn)
2 coshφL,n sinhφT,n

The same way, we get:

Qn = Xn(1−Xn)
ν

(λ+ 2µ)Dn
[cosh φL,n θ

′
n − κL,n sinhφL,n θn] (6.81)

But we are interested in the displacement of the surface z = −h/2. (or h/2
as well, owing to the symmetry). We need:

Bm(ω,−h/2) =
κL,n
kn

sinh φL,nMn −
1

2Xn

sinh φT,nQn −
νθ′n

λ+ 2µ

(this because ∂zθn(−h/2) = −θ′n). After some straightforward algebra, it
comes:

Bn(ω,−h/2) =
ν

(λ+ 2µ)Dn
Xn(1−Xn) sinh φT,n× (6.82)

× [κL,n sinh φL,nθn − cosh φL,n θ
′
n]

The constants θn and θ′n are derived from the preceding section:

θn = − βP (ω) pn
2πKκ2na

2

[
1

κ2L,n
+

1

κ2n − κ2L,n

χ′′ cosh γn
γn sinh γn + χ′′ cosh γn

]

and

θ′n = − βP (ω) pnκn
2πKκna2 (κ2n − κ2L,n)

χ′′ sinh γn
γn sinh γn + χ′′ cosh γn
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Asymptotic regime

Now, the same considerations on the order of magnitude of κn that becomes
practically independent of its index at frequencies larger than a few Hz, and
much larger than κT,L,n, leads to:

θn ∼ − βP (ω)pn
2πKκ2a2κL

and

θ′n ∼ − βP (ω) pnχ
′′

2πKκ2a2h

χ′′

γ

1

κ

so that in the combination involved in Bn(ω,−h/2), θ′n can be neglected in
regard of θn. We also remark that the parameters Xn are very small, so that
an expansion of the various expressions is needed. At the lowest order we
find:

Dn =
λ+ µ

λ+ 2µ
Xn(xn + sinh xn cosh xn)

where xn ≡ knh/2. The asymptotic expression for Bn is now:

Bn ∼ − ν

λ+ µ

βP (ω)pn
2πKκ2a2kn

sinh2 xn
xn + sinh xn cosh xn

Finally, we find the asymptotic apex equation:

Z(ω, r) = −α(1 + σ)βP (ω)h

2πKκ2a2
∑

n

sinh2 xn pn
xn(xn + sinh xn cosh xn)

J0(ζnr/a)

(6.83)
The difference between the exact calculation and the preceding asymptotic
formula is negligible for frequencies lager than 1 Hz. An example of the
surface profile is shown on fig.6.25, where it can be seen that contrarily
to the previous asymptotic cases, the surface profile does not reproduces
the intensity profile. By taking the average of the surface weighted by the
intensity profile, we get the effective displacement. The transfer function
from the absorbed power βP (ω)h to the effective displacement Z(ω) is:

Z(ω)/βhP (ω) = −i α(1 + σ)

4πρCωa2
∑ (1 + χ2/ζ2n) J

2
0 (ζn) sinh

2 xn p
2
n

xn(xn + sinh xn cosh xn)
(6.84)

For an input Virgo mirror, this is:

Z(f)/βhP (f) =
1.3 10−11

f
m/absorbedW (6.85)
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and for a flat beam of radius 10 cm, we get:

Z(f)/βhP (f) =
8.8 10−13

f
m/absorbedW (6.86)
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Figure 6.20: Opto-thermal transfer function: f = 0.1 Hz, case of gaussian
beam w = 2 cm
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Figure 6.21: Opto-thermal transfer function: f = 1 Hz, case of a gaussian
beam w = 2 cm
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Figure 6.22: Opto-thermal transfer function: f = 0.1 Hz, case of a flat beam,
b = 10 cm
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Figure 6.23: Opto-thermal transfer function: f = 1 Hz,, case of a flat beam,
b = 10 cm
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Figure 6.24: Opto-thermal transfer function. Solid line: gaussian beam, w
= 2 cm. Dashed line: flat beam, b = 10 cm
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Figure 6.25: Bulk absorption. Surface distortion at 1 Hz for a gaussian beam
of width w = 2 cm. Solid line: asymptotic solution. Dashed line: intensity
profile for comparison
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Figure 6.26: Bulk absorption. Surface distortion at 1 Hz for a flat beam of
radius b = 10 cm. Solid line: asymptotic solution. Dashed line: intensity
profile for comparison
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Chapter 7

Mirrors standard thermal noise

standard thermal noise is the phase noise caused by random motions of the
reflecting faces of mirrors in a GW interferometer. A reflecting face can
move either because it is displaced by its suspension system, or because
it undergoes internal stresses. At finite temperature, the two effects are
possible. We address here the internal stresses. Consider a massive body
at temperature T . If T > 0, the atoms constituting the body are excited
and have random motions around their equibrium position. The fact that
they are strongly coupled to neighboring atoms makes possible propagation
of elastic waves of various types, reflecting on the faces and the onset of
stationary waves. One can show that, for a finite body (like for instance a
cylinder of silica), there is a discrete infinity of such stationary waves, each
corresponding to a particular elastic normal mode. At thermal equilibrium,
the state of the body can be represented by a linear superposition of all the
modes, with random relative phases, and, due to the energy equipartition
theorem, the same energy kBT (kB is the Boltzmann constant). The motion
of atoms near a limiting surface of the body will slightly modify its shape,
and if we consider the reflecting face of a mirror, a surface distortion is a
possible cause of phase change in the reflected beam, in other words, of
a noise. Estimation of the resulting spectral density of phase noise is the
internal thermal noise problem in massive mirrors.

351
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7.1 Damped harmonic oscillator

Each internal mode is characterized by its eigenfrequency, its geometry and
its amplitude. Determination of the eigenfrequencies and of the eigenmodes
of an arbitrary body is in general difficult, but the amplitude is a scalar x
obeying a dynamical equation analogous to the harmonic oscillator’s. If we
consider the decoupled and undamped oscillator, this is :

d2x

dt2
+ ω2

0x = 0

where ω0/2π is the eigenfrequency of the mode. At thermal equilibrium with
the environment (the heat bath), the amplitude follows a random walk so
that the potential and kinetic energies have equal means, each being equal
to kBT/2 (kB ∼ 1.38 × 10−23J.K−1 is the Boltzmann constant). For the
potential energy, we have

EP =
1

2
mω2

0x
2

by taking the expectation value, and assuming a zero mean of x, this gives

V (x) =
kBT

mω2
0

It is important to understand that though very small, the displacement-
like variable x is, at room temperature much larger than GW induced (xgw ∼
10−18m) displacements. Assume for instance a frequency of 2π × 1000 Hz
and an equivalent mass of 10 kg (in fact the masses equivalent to modes are
even smaller), we get a standard deviation

σ(x) = 3 × 10−15 m

At first sight, this seems to definitely forbid any GW detection. Even by
cooling at very low temperature (say 1 mK), the result is still much too high.

In fact and fortunately, this is not true if we take into account the fre-
quency distribution of the noise. If we introduce simultaneously a random
driving force (Langevin force) F (t) and a damping factor γ accounting for
dissipation, we couple the oscillator to the heat bath : the driving force ex-
presses action of the external world on the oscillator, whereas the damping
factor releases the received energy, so that the energy of the oscillator is
statistically stationary. The motion equation is (case of viscous damping) :

d2x

dt2
+ γ

dx

dt
+ ω2

0 x = F (t)/m
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By taking the Fourier transform, this is

x̃(ω) =
1

m

F̃ (ω)

ω2
0 − ω2 + iγ ω

The relation between the spectral densities of x and F must therefore be :

Sx(f) = SF (f)
1

m2

1

(ω2 − ω2
0)

2 + γ2ω2

SF is a constant (white noise) , its value can be determined by requiring that

∫ ∞

0
Sx(f) df = V (x) =

kBT

mω2
0

We have obviously

∫ ∞

0
Sx(f) df =

1

2

∫ ∞

−∞
Sx(ω)

dω

2π

so that

SF

∫ ∞

−∞

dω

(ω2 − ω2
0)

2 + γ2ω2
=

4πkBTm

ω2
0

For carrying out the integration, it is convenient to set

(ω2 − ω2
0)

2 + γ2ω2 = (ω2 − Ω2)(ω2 − Ω
2
)

where
Ω2 = ω2

0 − γ2/2 + i γ
√
ω2
0 − γ2/4

so that
Ω =

√
ω2
0 − γ2/4 + i γ/2

then the integral can be split into two terms, giving

SF

∫ ∞

−∞

[
1

ω2 − Ω2
− 1

ω2 − Ω2

]
dω

Ω2 − Ω2
=

4πkBTm

ω2
0

The Cauchy theorem gives (provided that γ > 0) :

∫ ∞

−∞

dω

ω2 − Ω2
=

iπ

Ω
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so that the integral reduces to π/γω2
0, and the result for the spectral density

of Langevin force is:
SF = 4kBTmγ

The spectral density of displacement is finally:

Sx(f) =
4kBTγ/m

(ω2 − ω2
0)

2 + γ2ω2
(7.1)

The mechanical quality factor Q is defined as

Q = ω0/γ (7.2)

The main features are:

ω → 0 ⇒ Sx(f) →
4kBT

mQω3
0

ω → ω0 ⇒ Sx(f) →
4kBQ

mω3
0

ω → ∞ ⇒ Sx(f) →
4kBTω0

mQω4

so that the spectral density is a constant for low frequencies, and the root
spectral density is 1/Q the value at resonance. On Fig.7.1, one sees the
general philosophy of thermal noise. The integral of the spectral density Sx
is independent on Q, but by increasing Q, we can concentrate the SD in the
neighborhood of the resonance, which becomes more and more narrow, and
reduce the thermal noise outside the resonance. This is why high-Q material
and fixations are searched for, in GW experiments. Heavy test masses and
low temperatures have been also obviously proposed a number of times.

7.2 The FD theorem

There is a more general derivation of the spectral density, based on the
Fluctuation-Dissipation Theorem (FD), due to Callen and Welton [25] : For
an elementary dynamical system described by a degree of freedom x and any
driving force F , one can consider the resulting velocity ṽ = iωx̃, and compute
a mechanical impedance as Z = ṽ/F̃ . Then, (this is the FD theorem):

Sx(f) =
4kBT

ω2
ℜe[Z] (7.3)
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Figure 7.1: sqrt of spectral density of thermal displacement : viscous damping

In the preceding case, for instance, we had

Z(ω) =
i ω/m

ω2
0 − ω2 + i γω

from where 7.1 follows directly. But this approach allows to obtain results
more difficult to derive by other means. For instance, if we consider a solid
resonator, as for instance a mirror substrate, dissipation of the elastic energy
is not caused by viscosity, but rather by thermoelastic processes: stressed
regions are heated, and there is a heat flow from hot to cold regions due to
finite thermal consuctivity leading to irreversibility. A very simple model of
thermoelastic dissipation is given by a complex elastic stiffness, the motion
equation being in some frequency domain:

[
−ω2 + ω2

0 (1 + iΦ)
]
x̃(ω) = F̃ /m
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where Φ is the so-called loss angle, often considered as independent on the
frequency. It may be seen as the inverse of the quality factor. We have thus:

x̃(ω) =
F̃ /m

ω2
0 − ω2 + iΦω2

0

(7.4)

In order to determine the function F , we can no more use the direct approach
of integrating over frequencies to recover the variance, because we know that
the eq. 7.4 is only valid in some frequency domain. However, by using the
FD theorem (eq.7.3), we get

Sx(f) =
4kBTω

2
0Φ

mω

1

(ω2 − ω2
0)

2 + ω4
0 Φ

2

This formula clearly holds above some cut-off frequency. It is essential to
note the very different behavior of this thermoelastic spectral density with
respect to the viscoelastic.

ω → 0 ⇒ Sx(f) →
4kBT

mQωω2
0

ω → ω0 ⇒ Sx(f) →
4kBQ

mω3
0

ω → ∞ ⇒ Sx(f) →
4kBTω

2
0

mQω5

(see Fig.7.2) This is a common behavior for all internal modes of solid res-
onators, each being viewed as a thermoelastically damped harmonic oscilla-
tor. It is possible to numerically compute resonance frequencies of a cylin-
drical solid (as the mirror substrates), associate such a model to each cor-
responding mode (the question of the effective mass of the mode is raised),
and sum up to find the global noise. Anyway, the increase of the thermal
noise at low frequency is presently the main limitation to GW detectors.

7.3 The Levin generalized coordinate method

We can now address the problem of internal degrees of freedom in the mirrors.
Internal elastic waves eventually distort the reflecting surface, causing a phase
noise. We have already discussed the way of obtaining the information on
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Figure 7.2: sqrt of spectral density of thermal displacement : thermoelastic
damping

the surface relevant for the beam. Let uz(t, x, y) be the z component of the
displacement vector of matter at the surface of the mirror. The equivalent
displacement (generalized coordinate x) is

x(t) =
∫ ∫

uz(t, x, y) I(x, y) dx dy

where I(x, y) is the normalized light intensity distribution in the TEM00

mode assumed to be the readout beam. We now follow the method proposed
by Levin ([24]). Let F (t) be the corresponding driving force. The interaction
energy is

E = −F (t) x(t)
or

E =
∫ ∫

uz(t, x, y)F (t) I(x, y) dx dy

where the displacement u may be thought of as beeing caused by the pressure
distribution F × I. We address now the case of low frequencies. This case is
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very relevant, because resonances of mirrors are at relatively high frequencies
(several kHz) and the region where internal thermal noise is disturbing lies
long before the first resonance, in the low frequency regime. Thus, although
a general knowledge on internal thermal noise is useful, it is nevertheless
extremely interesting to have the low frequency tail. This can be obtained as
follows. If we consider a force F (t) = F eiωt oscillating at very low frequency,
the frequency will be lower than the cut-off for any standing waves. the
pressure F × I will produce an oscillating stationary displacement u, of the
form

uz(t, x, y) = ei(ωt−φ)u(x, y)

this is equivalent to neglecting inertial forces in the motion of matter. The
phase φ represents a retardation effect that dissipation may cause. In the
Fourier domain, this is

uz(ω, x, y) = (1− iφ)uz(x, y)

the impedance is

Z(f) = iω
(1− iφ)

∫ ∫
uz(x, y) I(x, y) dx dy

F

so that

ℜe[Z] = ω φ

∫ ∫
uz(x, y)F.I(x, y) dx dy

F 2

where the numerator of the fraction appears as the elastic energy stored
in the solid stressed by the pressure distribution F.I. The strain energy is
defined in classical elasticity theory by

W =
1

2

∫ ∫
uz(x, y)p(x, y) dx dy

where p(x, y) is the pressure distribution causing the displacement uz(x, y)
at the surface where it is applied. We can thus write for the spectral density
of displacement :

Sx(f) =
4kBT

πf
φ
W

F 2

in fact, W is proportional to F 2, so that U ≡W/F 2 is the strain energy for a
static pressure normalized to 1 N. The SD of displacement takes the general
(low frequency) form :

Sx(f) =
4kBT

πf
φU (7.5)
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The problem is reduced to the computation of U . This can be difficult in
the general case of an arbitrary solid, but numerical finite element codes are
able to give more or less accurate estimates. It is however possible to obtain
analytic solutions in the case of axial symmetry.

7.4 Basic linear elasticity

We recall here the principles and master formulas of the linear elasticity
theory.

7.4.1 displacement, strain, stress

Let a solid be decribed in the (x,y,z) coordinate system by its reference state,
and its deformed state

xi → xi + ui(xk)

The vector u is called displacement vector. The strain tensor Eij is defined
as

Eij =
1

2
(∂iuj + ∂jui)

Its trace is

E =
3∑

i=1

Eii

The stress tensor Θij is linearly related to the strain tensor in a way general-
izing Hooke’s law. For isotropic solids (like silica), the relation is very simple
:

Θij = λ δijE + 2µEij

the two parameters (λ, µ) are called Lam coefficients. They are related to
the Young modulus Y and the Poisson ratio σ by

λ =
Y σ

(1 + σ)(1− 2σ)

µ =
Y

2(1 + σ)
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7.4.2 Elastodynamics equation

The elastodynamics equation is :

∂jΘij = ρ ∂2t ui

which in the static case reduces to the equilibrium equation

∂jΘij = 0

In polar coordinates (r, φ, z), the strain tensor has coordinates

Err, Erφ, Erz, Eφφ, Ezφ, Ezz

defined by :

Err = ∂rur

Erφ =
1

2

(
∂ruφ −

uφ
r

+
1

r
∂φur

)

Erz =
1

2
(∂ruz + ∂zur)

Eφφ =
1

r
∂φuφ +

ur
r

Ezφ =
1

2

(
1

r
∂φuz + ∂zuφ

)

Ezz = ∂zuz

The elastodynamics equation reads in detail





∂rΘrr +
1
r
(Θrr −Θφφ) +

1
r
∂φΘrφ + ∂zΘrz = ρ ∂2t ur

(∂r +
2
r
)Θrφ +

1
r
∂φΘφφ + ∂zΘφz = ρ ∂2t uφ

(∂r +
1
r
)Θrz +

1
r
∂φΘφz + ∂zΘzz = ρ ∂2t uz

(7.6)

In the special case of static axial symmetry, the system reduces to the equi-
librium equation :

{
∂rΘrr +

1
r
(Θrr −Θφφ) + ∂zΘrz = 0

(∂r +
1
r
)Θrz + ∂zΘzz = 0

(7.7)
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7.4.3 Boundary conditions

The boundary conditions express the balance between internal stresses and
external pressures at the limiting surfaces :

[
∑

j

Θijnj ]Σ = pi

where ni is the normal to surface Σ

7.5 Mirror as a half-space

If the spot of the readout beam on a mirror is centered and small compared
to the mirror’s dimensions (radius, thickness), we can consider the substrate
as an infinite half-space limited by a plane (the optical curvature is negligible
here). The problem obeys the axial symmetry and it is easy to verify that
there is a solution of 7.7 of the form :

ur(r, z) =

(
α− λ+ 2µ

λ+ µ
β + β kz

)
e−kzJ1(kr)

uz(r, z) =

(
α +

µ

λ+ µ
β + β kz

)
e−kzJ0(kr)

where (α, β, k) are arbitrary constants. The Jn are the Bessel functions.
The region occupied by the substrate is supposed to extend from z = 0 till
infinity. The boundary conditions are

[Θrz]z=0 = 0

and
[Θzz]z=0 = p(r)

where p(r) is the gaussian pressure having the beam’s profile and normalized
to 1 N (the integral over the whole plane of a pressure is a force):

p(r) =
2

πw2
e−2r2/w2

It is easy to compute the stresses :

Θrz = 2µ k (β − α− β kz)J1(kr)
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Θzz = −2µ k (α+ β kz)J0(kr)

The first boundary condition gives α = β. The solution depends now on
two arbitrary constants (α, k). In fact the most general solution will be an
integral over k :

ur(r, z) =
∫ ∞

0
α(k)

(
− µ

λ + µ
+ kz

)
e−kzJ1(kr)k dk

uz(r, z) =
∫ ∞

0
α(k)

(
λ+ 2µ

λ+ µ
+ kz

)
e−kzJ0(kr)k dk

and now, α(k) refers to an arbitrary function of k. The Θzz stress component
becomes :

Θzz(r, z = 0) = −2µ
∫ ∞

0
α(k)J0(kr) k

2 dk

so that the last boundary condition becomes
∫ ∞

0
α(k)J0(kr) k

2 dk = − 1

2µ
p(r) (7.8)

This expresses a Bessel transform. Recall that for functions admitting a
Fourier transform, the two reciprocal Fourier transforms become, for axially
symmetrical functions, reciprocal Bessel transforms :

f̃(ρ) =
∫ ∞

0
J0(ρr)f(r) r dr

and
f(r) =

∫ ∞

0
J0(ρr)f̃(ρ) ρ dρ

we have thus, inverting the Bessel transform in 7.8 :

kα(k) = − 1

2µ

∫ ∞

0
p(r) J0(kr) r dr

It is possible to carry out the integration (see [20], Eq. 11.4.29), obtaining

α(k) = − 1

4πµk
e−k

2w2/8

and consequently a displacement

uz(r, z = 0) = − λ+ 2µ

µ(λ + µ)

1

4π

∫ ∞

0
e−k

2w2/8 J0(kr) dk (7.9)
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Figure 7.3: Displacement of the surface of an infinite substrate under gaussian
pressure. The dashed line recalls the beam profile. The surface is assumed
infinite (radius much larger than the beam width)

the integral can be found in tables of Bessel transforms [26], then converting
(λ, µ) into (Y , σ) leads to :

uz(r, z = 0) = − 1− σ2

Y

√
2

πw2
I0(r

2/w2) e−r
2/w2

where I0 refers to the modified Bessel function. The profile of the displace-
ment is shown in Fig.7.3. But we are interested in the strain energy, which
can be calculated using

U = −1

2

∫ ∫
uz(r, z = 0) p(r) r dr dφ

that is

U =
1− σ2

Y

2

πw2

∫ ∞

0
r dr e−2r2/w2

∫ ∞

0
dk e−k

2w2/8J0(kr)
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=
1− σ2

Y

2

πw2

∫ ∞

0
dk e−k

2w2/8
∫ ∞

0
r dr e−2r2/w2

J0(kr)

=
1− σ2

Y

2

πw2

∫ ∞

0
dk e−k

2w2/8 w
2

4
e−k

2w2/8

=
1− σ2

2
√
πY w

And finally, the spectral density of internal thermal noise takes the very
simple expression

Sz(f) =
4kBT

πf ,

Φ
1− σ2

2
√
πY w

(7.10)

with values such that Y ∼ 7.3× 1010Nm−2, σ ∼ 0.17, w = 0.02 m, and a loss
angle of Φ ∼ 10−6, we get a root spectral density

S1/2
z (f) ∼ 10−18

[
1Hz

f

]1/2
mHz−1/2

7.6 Finite mirrors

The preceding calculation does not allow to study the effect of the aspect ratio
of the actual mirror on the spectral density of thermal noise. We propose
here an approximate model for a cylindrical mirror having a radius a and a
thickness h. This model has been published in the BHV paper [33] with one
wrong boundary condition. Then Yuk Tung Liu et al. (YT) have derived a
correction to the BHV result.

7.6.1 A solution to the equilibrium equations

We consider a cylindrical mirror limited by:

0 ≤ r ≤ a, 0 ≤ z ≤ h

The reflecting face is assumed at z = 0 In the case of a finite solid, we expect
the displacement vector to be a discrete sum of Bessel modes, of the form:





ur(r, z) =
∑
mAm(z)J1(kmr)

uφ(r, z) = 0
uz(r, z) =

∑
mBm(z)J0(kmr)

(7.11)
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Where Am, Bm are arbitrary functions of z, and km arbitrary constants. The
equilibrium equations however imply for each order:

{
µ(A′′

m − k2mAm)− (λ+ µ)km(B
′
m + kmAm) = 0

µ(B′′
m − k2mBm) + (λ+ µ)(B′′

m + kmA
′
m) = 0

(7.12)

so that by combining the two, we get:

[∂2z − k2m](A
′
m + kmBm) = 0

the solution of which is:

A′
m + kmBm = km

(
αme

−kmz + βme
kmz

)

where αm, βm are arbitrary constants. This allows to substitute Bm in the
first of eq.7.12, and yields:

A′′
m − k2mAm = − λ + µ

λ+ 2µ
k2m

(
αme

−kmz − βme
kmz

)

the solution of which is:

Am(z) = γme
−kmz + δme

kmz +
λ+ µ

2(λ+ 2µ)
kmz

(
αme

−kmz + βme
kmz

)
(7.13)

introducing two new series (γm, δm) of arbitrary constants. Now Bm is de-
termined:

Bm(z) =

(
λ+ 3µ

2(λ+ 2µ)
αm + γm

)
e−kmz +

(
λ+ 3µ

2(λ+ 2µ)
βm − δm

)
ekmz+

+
λ + µ

2(λ+ 2µ)
kmz

(
αme

−kmz − βme
kmz

)
(7.14)

The stress tensor has the following non zero components of order m:





Θm,rr = λ(B′
m + kmAm)J0(kmr) + 2µkmAmJ

′
1(kmr)

Θm,φφ = λ(B′
m + kmAm)J0(kmr) + +2µAm

r
J1(kmr)

Θm,zz = [(λ+ 2µ)B′
m + λkmAm] J0(kmr)

Θm,rz = µ(A′
m − kmBm)J1(kmr)

(7.15)
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7.6.2 Boundary conditions

The boundary conditions we assume are:

• No shear on the cylindrical edge, i.e.

Θrz(r = a, z) = 0

this can be satisfied by requiring that kma is a zero of J1

km ≡ ζm/a

where the ζm are the strictly positive zeros of J1.

• No shear on the two circular faces, i.e.

Θrz(r, z = 0) = 0, Θrz(r, z = h) = 0 (7.16)

• Pressure of the beam on the first face:

Θzz(r, z = 0) = −p(r) (7.17)

• No pressure on the second face:

Θzz(r, z = h) = 0 (7.18)

• No radial stress on the cylindrical edge:

Θrr(r = a, z) = 0 (7.19)

To the preceding constraints, Yuk Tung Liu et al. have pointed out that
the pressure acting on the face z = h results in a global force accelerating
the solid, so that an acceleration field must be added to the equilibrium
equations. This will be treated later. Now the pressure distribution can be
expanded on the orthogonal family of functions J0(ζmr/a):

p(r) = p0
∑

m

pmJ0(ζmr/a)

where p0 = 1/πa2 is a normalisation constant such that the pm are dimen-
sionless. The orthogonality relations are:

∫ a

0
J0(ζmr/a)J0(ζnr/a) r dr =

1

2
a2J2

0 (ζm)
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so that the pm are obtained as:

pm =
2π

J2
0 (ζm)

∫ a

0
p(r)J0(ζmr/a) r dr (7.20)

The Θrz and Θzz components of the stress tensor are easily found from Am
and Bm:

Θm,rz/kmµ =

(
2δm − µ

λ+ 2µ
βm

)
ekmz −

(
2γm +

µ

λ+ 2µ
αm

)
e−kmz+

− λ+ µ

λ + 2µ
kmz

(
αme

−kmz − βme
kmz

)
(7.21)

and

Θm,zz/kmµ = (βm − 2δm)e
kmz − (αm + 2γm)e

−kmz−

− λ+ µ

λ + 2µ
kmz

(
αme

−kmz + βme
kmz

)
(7.22)

The boundary conditions provide 4 equations. The two first are:

βm − 2δm − αm − 2γm = −pm/kmµ (7.23)

and

2δm − µ

λ+ 2µ
βm − 2γm − µ

λ+ 2µ
αm = 0 (7.24)

They allow to compute γm and δm in terms of αm, βm:

γm =
1

4

[
λ+ µ

λ+ 2µ
βm − λ+ 3µ

λ+ 2µ
αm +

pm
kmµ

]

δm =
1

4

[
λ+ 3µ

λ+ 2µ
βm − λ+ µ

λ+ 2µ
αm +

pm
kmµ

]

The next two boundary conditions imply:

[
2δm − µ

λ+ 2µ
βm

]
ekmh −

[
2γm +

µ

λ+ 2µ
αm

]
e−kmh+

+kmh
λ+ µ

λ+ 2µ

[
βme

kmh − αme
−kmh

]
= 0
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and

(βm − 2δm)e
kmh − (αm + 2γm)e

−kmh − λ+ µ

λ+ 2µ
kmh

[
βme

kmh + αme
−kmh

]
= 0

by substituting the values found for γm, δm, we find

αm = p0
pm(λ+ 2µ)

kmµ(λ+ µ)

1− qm + 2qmxm
(1− qm)2 − 4qmx2m

(7.25)

βm = p0
pm(λ+ 2µ)

kmµ(λ+ µ)

qm(1− qm + 2xm)

(1− qm)2 − 4qmx2m
(7.26)

then

γm = −p0
pm

2kmµ

2qmx
2
m + µ

λ+µ
(1− qm + 2qmxm)

(1− qm)2 − 4qmx2m
(7.27)

δm = −p0
pmqm
2kmµ

2x2m − µ
λ+µ

(1− qm + 2xm)

(1− qm)2 − 4qmx2m
(7.28)

with the notation xm ≡ kmh and qm ≡ exp(−2xm). At this point, YT pointed
out that the component of spatial frequency zero of the pressure has not been
taken into account. Because the series involves only strictly positive zeros
of J1, the preceding displacement has a zero average on the strained face.
One must consider the resulting force acting on the body under the uniform
pressure

p0 = 1/πa2

producing a force of 1 N after integration on the disk. But this force pro-
duces an acceleration, so that an acceleration field should be added in the
equilibrium equations (recall that our mirrors are practically free falling in
the z direction). This can be done by adding to the preceding displacement
an extra displacement of the form:





δur(r, z) = λp0r
2µ(3λ+2µ)

(1− z/h)

δuφ(r, z) = 0

δuz(r, z) = λp0r2

4µh(3λ+2µ)
− (λ+µ)p0

µ(3λ+2µ)
(z − z2/2h)

(7.29)

This extra displacement contributes only the axial stress:

δΘzz = −p0(1− z/h)
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all other stress components are identically zero. The equilibrium equations
remain satisfied:

∂zδΘzz = p0/h = ρ× 1N

ρπa2h
= ρ× (1N)/M = ρz̈

where M is the mirror mass and ρ the density. Now the sum of the displace-
ment 7.11 and the extra displacement 7.28 satisfies all boundary conditions,
except the vanishing of the radial stress on the cylindrical edge. We have
indeed

Θm,rr(r = a, z) = λ(kmAm(z) +B′
m(z))J0(ζm) + 2µkmAm(z)J

′
1(ζm)

but due to the fact that J ′
1(ζm) = J0(ζm), and after substituting the explicit

values of Am and Bm, we get

Θm,rr(r = a, z) = p0
J0(ζm)pm

(1− qm)2 − 4qmx2m

[
(1− qm + 2qmxm(1 + xm)) e

−kmz−

−qm (1− qm + 2xm(1− xm)) e
kmz−

−kmzqm(1− qm + 2xm)e
kmz − kmz(1 − qm + 2qmxm)e

−kmz
]

(7.30)

It is numerically easy to check that this function of z is not very different
from linear. It has even a vanishing average. It is therefore possible to find an
approximate solution of the problem by using the De Saint-Venant principle:
If we add to our displacement vector one more extra displacement giving a
linear stress with suitable parameters, we compensate for the mean stress and
torque on the edge, and the resulting solution is very accurate everywhere in
the body, except maybe in the neighborhood of the edge, where the strain
energy is likely weak. The second extra displacement is of the form:





∆ur(r, z) = λ+2µ
2µ(3λ+2µ)

(c0r + c1rz)

∆uφ(r, z) = 0

∆uz(r, z) = − λ
µ(3λ+2µ)

(c0z + c1z
2/2)− λ+2µ

4µ(3λ+2µ)
c1r

2

(7.31)

This displacement induces zero stresses, and thus leaves unchanged the bound-
ary conditions, except for a radial contribution:

∆Θrr(z) = c0 + c1z



370 CHAPTER 7. MIRRORS STANDARD THERMAL NOISE

This linear stress can be adjusted to compensate for the first moments of the
residual stress Θrr(r = a, z). We require for instance a minimum value for
the integral ∫ h

0
[Θrr(r = a, z) + ∆Θrr(z)]

2 dz

If we define

I0 =
1

h

∫ h

0
Θrr(r = a, z)dz

I1 =
1

h2

∫ h

0
Θrr(r = a, z)z dz

we have the values of c0, c1:

c0 = 6I1 − 4I0, c1 = 6(I0 − 2I1)/h

The explicit expression of Θrr(r = a, z) (eq.7.30) allows to compute I0, I1.
Firstly, one finds I0 = 0. and secondly

I1,m = p0 J0(ζm)pm/k
2
mh

2

so that
I1 = p0 × s

where

s =
a2

h2
∑

m

pmJ0(ζm)

ζ2m

then
c0 = 6sp0, c1 = −12sp0/h

7.6.3 Strain Energy

The global displacement vector has the form




ur(r, z) =
∑
mAm(z)J1(ζmr/a) + Pr +Qrz

uφ(r, z) = 0
uz(r, z) =

∑
m Bm(z)J0(ζmr/a) +Wr2 + Tz + Sz2

where P,Q,W, T, S are known coefficients related to the two extra displace-
ment terms defined above. The strain components are:

Err(r, z) =
∑

m

kmAm(z)J
′
1(ζmr/a) + P +Qz
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Eφφ(r, z) =
∑

m

Am(z)
J1(ζmr/a)

r
+ P +Qz

Ezz(r, z) =
∑

m

B′
m(z)J0(ζmr/a) + T + 2Sz

Erz(r, z) =
∑

m

(A′
m(z)− kmBm(z)) J1(ζmr/a)

the trace of the strain tensor is thus:

E(r, z) =
∑

m

(B′
m(z) + kmAm(z)) J0(ζmr/a) + 2P + T + 2(Q+ S)z

The strain energy per N2(our target) is given by

U =
∫ 2π

0
dφ
∫ h

0
dz
∫ a

0
r dr w(r, z)

where the energy density w is defined as:

w =
1

2

[
λE2 + 2µ

(
E2
rr + E2

φφ + E2
zz + 2E2

rz

)]
(7.32)

The squares of the stress components involve the squares of the main stresses,
the squares of the extra stresses, plus crossed terms. It is possible to show
that crossed terms vanish in the r integration. There is thus a perfect decou-
pling,and the extra terms in the displacement vector result in corrections to
the global energy.

Main contribution to the strain energy

Now we can compute the main contribution. We recall the following integrals:

∫ a

0
J0(ζmr/a)J0(ζmr/a)r dr =

a2

2
J2
0 (ζm)

∫ a

0
J1(ζmr/a)J1(ζmr/a)r dr =

a2

2
J2
0 (ζm)

For the Bessel modes contribution we have thus:

U =
πa2

2

∑

m

J0(ζm)
2
∫ h

0
Um(z) dz
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where

Um = λ(B′
m + kmAm)

2 + 2µ
(
k2mA

2
m +B

′2
m +

1

2
(A′

m − kmBm)
2
)

All the terms being known, the integration is straightforward, and the result
is:

U =
πa3

4

λ+ 2µ

µ(λ+ µ)

∑

m

J2
0 (ζm)p

2
m

ζm

1− q2m + 4qmxm
(1− qm)2 − 4qmx2m

or as well, using the Young modulus Y and the Poisson ratio σ instead of
the Lam coefficients:

U =
1− σ2

πaY

∑

m

J2
0 (ζm)p

2
m

ζm

1− q2m + 4qmxm
(1− qm)2 − 4qmx2m

(7.33)

The dimension of U is J.N−2.

Correction to strain energy

The contribution of the extra stresses to the strain energy is:

∆U =
∫ 2π

0
dφ
∫ a

0
r dr

∫ h

0
∆w(z)dz

where ∆w(z) is the extra density:

∆w(z) =
1

2

[
λ (((2P + T + 2(Q+ S)z)2 + 2µ

(
2(P +Qz)2 + (T + 2Sz)2

)]

The coefficients are:

P =
p0

2µ(3λ+ 2µ)
(λ+ 6s(λ+ 2µ))

Q = − p0
2µ(3λ+ 2µ)h

(λ+ 12s(λ+ 2µ))

T = − p0
µ(3λ+ 2µ)

(λ+ µ+ 6sλ)

S =
p0

2µ(3λ+ 2µ)h
(λ+ µ+ 12sλ)

The result is:

∆U =
πa2hp20

6µ(3λ+ 2µ)

[
6λs+ λ+ µ+ 36(λ+ 2µ)s2

]
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After replacing the Lam coefficients by Y, σ, this is:

∆U =
a2

6πh3Y



(
h

a

)4

+ 12σξ

(
h

a

)2

+ 72(1− σ)ξ2


 (7.34)

with

ξ ≡
∑

m>0

pmJ0(ζm)/ζ
2
m

Explicit coating displacement and edge stress

It is interesting to have the explicit expression for the reflecting surface dis-
placement:

uz(r, z = 0) =
2(1− σ2)

πaY

∑

m>0

1− q2m + 4qmxm
(1− qm)2 − 4qmx2m

pmJ0(ζmr/a)

ζm
+

+
r2/a2

2πhY

[
σ + 12ξ

a2

h2
(1− σ)

]

units are m/N. See the displacement profile on figure 7.4
For the stress on the cylindrical edge before correction, we have as seen

above (7.30):

Θrr(r = a, z) =
1

πa2
∑

m>0

J0(ζm)pm
(1− qm)2 − 4qmx2m

[
(1− qm + 2qmxm(1 + xm)) e

−ζmz/a−

−qm (1− qm + 2xm(1− xm)) e
ζmz/a−

−ζm
z

a

[
qm(1− qm + 2xm)e

ζmz/a + (1− qm + 2qmxm)e
−ζmz/a

]]

A plot of Θrr(r = a, z) (fig.7.5) shows the its quasi-linear behavior, justifying
a posteriori the De Saint-Venant approximation.

Case of gaussian beams

if the beam intensity comes from a TEM00 wave of width w, we have

pm =
2π

J0(ζm)2
2

πw2

∫ a

0
exp(−2r2/w2)J0(ζmr/a) r dr
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Figure 7.4: Displacement of the surface of a finite substrate under a gaussian
pressure

The upper integration bound can be replaced by +∞ if, as a mirror, the
cylinder has negligible diffraction losses. Then the result can be found in [20]
(eq. 11.4.29).

pm =
1

J0(ζm)2
exp

[
− ζ2mw

2

8a2

]

The expansion of p(r) on the orthogonal family J0(ζmr/a) is rapidly conver-
gent. A plot of p(r) reconstructed from only 12 terms is shown on fig.7.6.
A good accuracy is obtained for all the numerical calculations with only 50
terms. The expression 7.33 for U takes the special form

UGauss =
1− σ2

πaY

∑

m>0

exp(−ζ2mw2/4a2)

ζmJ0(ζm)2
1− q2m + 4qmxm

(1− qm)2 − 4qmx2m
(7.35)

the ξ parameter involved in expression 7.34 for ∆U takes the special form:

ξGauss =
∑

m>0

exp(−ζ2mw2/8a2)

ζ2mJ0(ζm)



7.6. FINITE MIRRORS 375

 0.0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1.0
-30.

-20.

-10.

 0.

 10.

 20.

 30.

axial parameter z/h

Θ
rr
(r

=
a,

z)
 [

m
-2

N
-1

]

a=0.175 m, h=0.1 m

Figure 7.5: Radial stress along the edge of the cylindrical solid. Solid line :
Θrr(r = a, z), Dashed line: linear fit c0 + c1z

It is interesting to compare the results with the case discussed in the pre-
ceding section, of the half-space (infinite mirror) appproximation. If we note
UHS the corresponding strain energy and UFM that of the finite mirror, we
can plot the ratio for varying aspect ratios (see Fig.7.7). and it is clear
that for a given thickness h, values of a as small as possible are desirable.
Gong-like mirrors are worse than bar-like ones.

7.6.4 Some numerical results

For a Virgo input mirror, a =0.175m, h =0.1m, w =0.02m, we get

U ∼ 1.81 × 10−10 J.N−2

∆U ∼ 2.08 × 10−11 J.N−2

Utot = U +∆U ∼ 2.02 × 10−10 J.N−2
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The infinite mirror approximation was:

U∞ ∼ 1.88 × 10−10 J.N−2

so that U/U∞ ∼ 1.07. The corresponding root spectral density of thermal
noise is given by

Sx(f)
1/2 =

√
4kBT

πf
ΦUtot

so that we find (the loss angle being 10−6:

Sx(f)
1/2 ∼ 1.03 × 10−19 m.Hz−1/2 at 100 Hz

For a Virgo end mirror (a =0.175m, h =0.1m, w =0.0554m) we find:

U ∼ 5.55 × 10−11 J.N−2

∆U ∼ 1.75 × 10−11 J.N−2
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Figure 7.7: relative spectral density of Thermal noise for various aspect ra-
tios. Solid line: a=0.175m, long dashed line: a=0.2m, short dashed line:
a=0.15m

Utot ∼ 7.30 × 10−11 J.N−2

The beam width has changed (w=5.54cm), so that

U∞ ∼ 6.77 × 10−11 J.N−2

so that U/U∞ ∼ 1.08. and

Sx(f)
1/2 ∼ 6.21 × 10−20 m.Hz−1/2 at 100 Hz

Finally, it is interesting to check the convergence of Utot to the infinite mirror
approximation when the size of the mirror increases. This is shown on Fig.7.8.
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Figure 7.8: Convergence of the finite mirror model to the infinite, when the
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7.7 Non gaussian beams

7.7.1 Half-space approximation

It has been suggested ([37]) to use light beams with a flat profile in the long
cavities instead of gaussian modes, in order to reduce the thermoelastic noise.
It is expected that widen the beam will average the surface fluctuations and.
The idea is convincing, but a quantitative model is obviously needed. We
have addressed the question of how to generate these modes in a preceding
section. For any pressure profile p(r), the general expression of α(k) is, as
already seen:

kα(k) = − 1

2µ

∫ ∞

0
p(r) J0(kr) r dr

so that the displacement of the surface of the half-space is:

uz(r, z = 0) = − λ+ 2µ

2µ(λ+ µ)

∫ ∞

0
dk J0(kr)

∫ ∞

0
r′dr′ J0(kr

′) p(r′)
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or as well, using the Poisson ratio and the Young modulus:

uz(r, z = 0) = − 2(1− σ2)

Y

∫ ∞

0
dk J0(kr)

∫ ∞

0
r′dr′ J0(kr

′) p(r′) (7.36)

It is easy to see that the strain energy per N2 is then given by

U =
2π(1− σ2)

Y

∫ ∞

0
dk p̃(k)2

where

p̃(k) =
∫ ∞

0
r dr p(r) J0(kr)

is nothing but the Fourier transform of the pressure distribution. In the
special case of a distribution uniform on the disk r < b, representing a
simplified version of a realistic mode (which would be only almost flat), we
have

p(r) =

{
1/πb2 (r < b)
0 (r ≥ b)

so that

p̃(k) =
J1(kb)

πkb

and the energy integral reduces to

U =
2(1− σ2)

πY b

∫ ∞

0
dx

(
J1(x)

x

)2

the integral is of the Weber-Schafheitlin type (see [20] p.487), thus expressible
in terms of a hypergeometric series:

∫ ∞

0
dx

(
J1(x)

x

)2

=
1

2
F
(
1

2
, −1

2
; 2 ; 1

)

now (see [20] p.556),

F
(
1

2
, −1

2
; 2, 1

)
=

8

3π

so that we have
∫ ∞

0
dx

(
J1(x)

x

)2

=
4

3π
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which yields the final result:

U =
8(1− σ2)

3π2Y b

It is worth to compare this value, denoted by Uflat with the gaussian value,
denoted by UGauss:

Uflat

UGauss
=

16

3π3/2

w

b
≈ .96

w

b

If it is possible to establish a flat mode of radius 10 cm where a gaussian
mode of half-width 2 cm was used, the gain in thermal noise could be

√
Uflat

UGauss
≈ 0.44

which means a factor better than 2 in sensitivity, therefore 1 order of magni-
tude in the analyzed volume of space in the frequency band around 100 Hz.
For curious readers, and though it is of no practical interest for our present
purpose (but any result may always be re-used one day in a different con-
text), we show the (virtual) distorted surface on Fig.7.9, and give the apex
equation of the surface as:

uz(r, z = 0) = − 2(1− σ2)

πY b





1 (r = 0)

F
(
1
2
, −1

2
; 1 ; r2/b2

)
(0 < r < b)

2/π (r = b)

bF
(
1
2
, 1

2
; 2 ; b2/r2

)
/2r (r > b)

where F (a, b; c; z) denotes the Gauss hypergeometric series.

In this case, the pressure distribution takes however significant values
probably near the edge of the mirror, because the reduction of thermal noise
operates only if a is much larger than w, and secondly because the size
of actual mirrors has been defined as the minimum consistent with small
diffraction losses, so that say 5 times w is near the physical edge for input
mirrors, and outside the mirror for end mirrors of radius 35 cm. Approximate
representation of the mirror as an infinite half-space is thus questionable in
this case, and a theory with a finite mirror radius is needed.
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Figure 7.9: Displacement of the surface of an infinite substrate under a pres-
sure uniform on the disk r < b. The surface is assumed infinite

7.7.2 Finite test mass approximation

The model developped for a finite mirror of radius a and thickness h can be
extended to the case of a flat pressure

{
p(r) = 1/πb2 (r ≤ b)
p(r) = 0 (r > b)

representing approximately a flat mode. The pressure coefficients are:

pm =
2aJ1(ζmb/a)

bζmJ2
0 (ζm)

The pm decrease much less rapidly for increasing m than in the case of a
gaussian profile, so that reconstruction of p(r) is numerically difficult. But
The series giving U and ξ are still convergent, despite the new values for the
pm. In fact, these new pm are decreasing like 1/

√
m, so that the formal series

giving p(r) is valid in the sense of the distribution theory. But the terms in
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Figure 7.10: Radial stress and corresponding linear fit. b=0.1m

the series 7.33 fo r U , and in the series defining ξ are nevertheless decreasing
like 1/m3, so that ordinary convergence is secured. All the formulas derived
in the preceding section are unchanged, apart from the new values for pm. It
is nevertheless necessary to check that the correction for the radial stress on
the edge is still reasonable. If we compute the stress Θrr(r = a, z) with the
new coefficients, we get the following plot (fig.7.10), in the case of a mirror of
radius 0.175m and a pressure flat in a disk of radius 0.1m. showing that the
De Saint-Venant correction is still realistic. Even with a spot radius of 0.15m,
the linear correction seems to make sense (see fig.7.11). The displacement of
the reflecting surface is much less than in the gaussian case (fig.7.12), and
distortion is very similar to the infinite case. It is especially intersting to
compare the spectral densities of thermal noise in the gaussian mode regime
to the flat mode regime. The following plot (7.13) shows again the large gain
that could be achieved by increasing the spot radius. Comparison is made
with a gaussian beam of width 2cm. It is interesting to remark that the case
b = a (the flat mode has the same radius as the mirror) leads to U = 0
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Figure 7.11: Radial stress and corresponding linear fit.b=0.15m

and ξ = 0. In this case the solution is exact, and the strain energy reduces,
according to 7.34 to

∆U = h/6πa2Y

7.7.3 Numerical results

Let us assume such a flat mode in the Virgo cavities whose mirrors are
assumed identical in size to the current situation. For the input mirrors, we
find:

U ∼ 1.60 × 10−11 J.N−2

∆U ∼ 1.06 × 10−11 J.N−2

Utot ∼ 2.65 × 10−11 J.N−2

The infinite mirror approximation was:

U∞ ∼ 3.59 × 10−11 J.N−2
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Figure 7.12: Displacement of the reflecting surface under a pressure uniform
in a disk of radius 0.1m. (a=0.175m, h=0.1m)

so that U/U∞ ∼ 0.74. We find the spectral density (the loss angle being still
10−6:

Sx(f)
1/2 ∼ 3.74 × 10−20 m.Hz−1/2 at 100 Hz

For the end mirrors, the mode having almost exactly the same spot size after
propagation, the numerical results are almost identical.

7.7.4 Realistic modes

The preceding approach is still questionable because the pressure distribu-
tion, as represented by an ideal flat top function is unrealistic from an optical
point of view. It is thus necessary to check that taking a more realistic flat
mode does not destroy the preceding conclusions. The more realistic model
proposed by D’ambrosio et al.[37] consists in a superposition of elementary
gaussian modes of waist w0 on a disk of radius b. If we adapt the model to the
Virgo parameters, for the sake of definiteness, we would have an amplitude
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Figure 7.13: gain in SD of thermal noise vs spot radius.(a=0.175m, h=0.1m)

on the flat input mirror of the form:

A(x, y, 0) =
∫

∆
φ(x− x0, y − y0, 0) dx0 dy0

where ∆ is the disk of radius b, and φ(x, y, z) a gaussian TEM00 wave:

φ(x, y, 0) = exp

(
−x

2 + y2

w2
0

)

The resulting amplitude has a quite flat maximum, with a gaussian-like edge
Parameter w0 determines the sharpness of this edge. It is easy to show that
after propagation at a distance L, the amplitude is (up to a normalization
factor):

A(x, y, L) ∝
∫ b/w

0
exp

[
−Z(ρ− ρ0)

2
]
exp(−2Zρρ0) I0(2Zρρ0) ρ0 dρ0

zR = πw2
0/λ being the Rayleigh parameter, w is the beam half-width after

propagation on the distance L:

w = w0

√
1 + L2/z2R
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Figure 7.14: Intensity profile in the flat mode. Solid line : Profile on the
input flat cavity mirror. Dashed line : Profile on the far mirror (3 km away).

ρ ≡ √
x2 + y2/w, and Z ≡ 1− iL/zR. I0(z) is the modified Bessel function of

the first kind. There is no better analytical expression for the amplitude, but
a numerical integration is straightforward, because the function exp(−z)I0(z)
has an easy behavior. On Fig.7.14, we have plotted the mode intensity profile
for the following parameters: w0 ∼ 3.2 cm, b = 0.1 m, at the two ends of
a cavity of length 3 km. Knowing A, we can compute numerically the pm
from |A|2 after normalization. This can be done for the input mirrors (flat
wavefront, L = 0) and for the end mirrors (’mexican hat’ wavefront, L =3
km). The corresponding strain energies are almost the same, because the
intensity distribution is weakly modified by diffraction for not too small w0.
Even for smaller w0 resulting in more distorted intensity profiles on the end
mirror, the strain energies are nearly identical at the two ends. In Fig.7.15,
we plot the values found for several particular radii and several values of
the parameter w0. It is clear that by decreasing the parameter w0 (sharping
the edge), we get more and more close to the ideally flat model. However a
too sharp edge is not desirable from an optical point of view, giving a too
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Figure 7.15: Strain energy U vs radius of the flat mode. Dashed line: Infinite
mirror and ideally flat mode, Solid line : Mirror of radius 0.175 m, thickness
0.1 m and ideally flat mode. Circles: same finite mirror with realistic mode
w0 ∼ 3.2 cm. Triangles: same finite mirror with realistic mode w0 ∼ 2 cm.
Diamonds: same finite mirror with realistic mode w0 ∼ 1 cm

distorted wavefront (and consequently unfeasible mirrors). However, in the
limit of reasonable parameters, we remark a good agreement between the
ideal and realistic models.

7.8 Mirror distortions and energy maps

It is interesting to write explicitly the solution of the elastical problem. The
expressions of the displacement vector components in the case of finite cylin-
drical mirrors are:

ur(r, z) = umain,r(r, z) + ∆ur(r, z)

uz(r, z) = umain,z(r, z) + ∆uz(r, z)
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with the following expressions:

∆uz(r, z) =
1

2πa2hY

{
[σ + 12s(1− σ)] r2 + (1 + 24sσ)z2 − 2(1 + 12sσ)hz

}

(with s ≡ ξa2/h2),

∆ur(r, z) =
r

πa2Y
{σ + 6s(1− σ)− z [σ + 12s(1− σ)] /h}

umain,r(r, z) =
1 + σ

πaY

∑

m>0

pmJ1(ζmr/a)

ζmDm

Pm(z)

with Dm ≡ (1− qm)
2 − 4qmx

2
m, and

−Pm(z) =
[
2qmx

2
m + (1− 2σ)(1− qm + 2qmxm)

]
exp(−ζmz/a)+

+qm
[
2x2m − (1− 2σ)(1− qm + 2xm)

]
exp(ζmz/a)−

−ζm
z

a
[(1− qm + 2qmxm) exp(−ζmz/a) + qm(1− qm + 2xm) exp(ζmz/a)]

and

umain,z(r, z) =
(1 + σ)

πaY

∑

m>0

pmJ0(ζmr/a)

ζmDm
Qm(z)

where

1

2
Qm(z) =

[
(1− σ)(1− qm + 2qmxm)− qmx

2
m)
]
exp(−ζmz/a)+

+qm
[
(1− σ)(1− qm + 2xm) + x2m

]
exp(ζmz/a)+

+ζm
z

2a
[(1− qm + 2qmxm) exp(−ζmz/a)− qm(1− qm + 2xm) exp(ζmz/a)]

Despite the apparent complexity, this is extremely fast to compute (see the
”Heating issues” chapter for algorithmic details). These formulas allow to
draw (see Fig.7.25) the distorted shape of the solid, and to check that the
distortion is minimized by the flat mode. It is also possible to give the strain
components. By derivating the preceding expressions, we get:

Ei,j(r, z) = Emain,i,j(r, z) + ∆Ei,j(r, z)
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Figure 7.16: Distorted mirror for 1 N normalized pressure. From left to
right: Gaussian mode, w=2cm, Gaussian mode w=5.54cm, flat mode of
radius b =10cm. (exaggerated by a factor of 6× 107)
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with, in detail:

Emain,rr(r, z) =
1 + σ

πa2Y

∑

m>0

pm
Dm

J ′
1(ζmr/a)Pm(z)

Emain,φφ(r, z) =
1 + σ

πa2Y

∑

m>0

pm
Dm

J1(ζmr/a)

ζmr/a
Pm(z)

Emain,zz(r, z) =
1 + σ

πa2Y

∑

m>0

pm
Dm

J0(ζmr/a)
a

ζm
Q′
m(z)

Emain,rz(r, z) =
1 + σ

πa2Y

∑

m>0

pm
Dm

J1(ζmr/a)
1

2

[
a

ζm
P ′
m(z)−Qm(z)

]

Emain(r, z) =
1 + σ

πa2Y

∑

m>0

pm
Dm

J0(ζmr/a)

[
Pm(z) +

a

ζm
Q′
m(z)

]

The functions Pm(z), Qm(z) have been defined above. Moreover we have:

a

ζm
Q′
m(z)+Pm(z) = −2(1−2σ)

[
(1− qm + 2qmxm)e

−ζmz/a − qm(1− qm + 2xm)e
ζmz/a

]

and

1

2

[
a

ζm
P ′
m(z)−Qm(z)

]
=

(
2qmx

2
m − (1− qm + 2qmxm)

ζm
a
z

)
e−ζmz/a−

−
(
2qmx

2
m − qm(1− qm + 2xm)

ζm
a
z

)
eζmz/a

For the extra contributions, we have

∆Err(r, z) =
1

πa2Y
[σ + 6s(1− σ)− z (σ + 12s(1− σ)) /h]

∆Eφφ(r, z) = ∆Err(r, z)

∆Ezz(r, z) =
1

πa2Y
[(1 + 24sσ)z/h− 1− 12sσ)]

∆Erz(r, z) = 0

∆E(r, z) = − 1− 2σ

πa2Y
[1− 12s− (1− 24s)z/h]
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Figure 7.17: Distribution of strain energy in a cylindical mirror of radius
a=17.5 cm, of thickness h=10 cm, under a gaussian pressure w=2 cm. Log-
arithmic scale
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Figure 7.18: Distribution of strain energy in a cylindical mirror of ra-
dius a=17.5 cm, of thickness h=10 cm, under a gaussian pressure w=5.54
cm.Logarithmic scale
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Figure 7.19: Distribution of strain energy in a cylindical mirror of ra-
dius a=17.5 cm, of thickness h=10 cm, under a flat top pressure b=15
cm.Logarithmic scale
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Figure 7.20: Distribution of strain energy in a cylindical mirror of radius
a=17.5 cm, of thickness h=10 cm, under a realistically flat pressure b=15
cm.



7.8. MIRROR DISTORTIONS AND ENERGY MAPS 395

 0.00  0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08  0.09  0.10
10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

axis

edge
axis

edge

axial coordinate z [m]

St
ra

in
 e

ne
rg

y 
de

ns
ity

 [
J.

m
-3

.N
-1

]

Figure 7.21: Distribution of strain energy on the axis and on the edge of
a cylindrical mirror (a=17.5 cm, h=10 cm). Case of a gaussian (w=2 cm)
beam (dashed lines), and of a realistic flat beam (b=0.15 m) (solid lines)
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so that it is possible to compute explicitly the strain energy density:

w(r, z) =
Y

2(1 + σ)

[
E(r, z)2

1− 2σ
+ Err(r, z)

2 + Eφφ(r, z)
2 + Ezz(r, z)

2 + 2Er,z(r, z)
2

]

The following pictures (Fig.7.17,7.18,7.19,7.20) show the distribution of w in
some cases examined above. The energy density is weak on the edge, and
this is even more clear for wider w and a fortiori, in average for flat beams
and realistic flat beams. We show in Fig.7.21 the energy density on the axis
and on the edge in the two extreme cases, namely a gaussian beam of width 2
cm, and a realistic flat mode of radius 15 cm. It can be seen that the energy
density is much lower on the edge than on the hot point on the axis, in both
cases, even if there is a sharp minimum for the gaussian beam, locally lower
than the flat beam average.

7.9 Higher order LG modes

7.9.1 Introduction

Another interesting possibility is to spread power on the mirror’s surface by
using high order gaussian TEM modes. We restrict here our attention to
axisymmetrical modes, for which the BHV model is relevant. The interest
of using gaussian modes is to keep using spherical mirrors, instead of exotic
surfaces. We hope the effect of misalignments to be significantly lower than
with flat modes.

7.9.2 The BHV model

In the case where both the mirrors and the beam are assumed axisymmetrical,
there exists a model allowing an accurate calculation of the low frequency tail
of the spectral densities of internal noises. As a result of Levin’s [?] theory
The power spectral density (PSD) of displacement equivalent to thermal
noise takes the general (low frequency) form :

Sx(f) =
4kBT

πf
φU (7.37)

where φ is a loss angle, and where U is the strain energy of the mirror under
a pressure distribution having the same profile as the readout beam, and
normalized to 1 N.
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Let us summarize the results of the preceding chapter. the total internal
energy is the sum of two contributions:

U = U0 + ∆U

that can be computed separately. Let a be the radius of the mirror and
h its thickness. Let Jν(x) be the Bessel functions, and {ζk, k > 0} the
family of all non-zero solutions of J1(ζ) = 0. Let us note xk ≡ ζkh/a, and
qk ≡ exp(−2xk). Let Y be the Young modulus of the mirror’s material and
σ its Poisson ratio.

Then we have:

U0 =
1− σ2

πaY

∑

k>0

J2
0 (ζk)p

2
k

ζk

1− q2k + 4qkxk
(1− qk)2 − 4qkx2k

(7.38)

The dimension of U is J.N−2.
In the preceding expression the Fourier-Bessel coefficients {pk, k > 0}

are determined by the pressure profile. If we denote by p(r) this pressure
distribution, we have:

pk =
2π

J2
0 (ζk)

∫ a

0
p(r)J0(ζkr/a) r dr (7.39)

For the second contribution, we have:

∆U =
a2

6πh3Y



(
h

a

)4

+ 12σξ

(
h

a

)2

+ 72(1− σ)ξ2


 (7.40)

with

ξ ≡
∑

k>0

pkJ0(ζk)/ζ
2
k

At this level, the computation amounts to find the pk.

7.9.3 Power profiles

In the case of an ideal flat-top mode of radius b, the pressure distribution is:

pflat(r) =

{
1/πb2 (r ≤ a)
0 (r > a)

(7.41)
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As seen in the preceding section, the pk coefficients are [?]

pk,flat =
2aJ1(ζkb/a)

bζk J
2
0 (ζk)

In the case of a Gaussian TEM00 readout mode of normalized amplitude

Ψ0,0(r) =

√
2

πw2
exp(−r2/w2),

the pressure distribution is:

p(r) = |Ψ0,0(r)|2

and the pk coefficients are:

p
(0)
k,0 =

1

J0(ζk)2
exp

[
− ζ2kw

2

8a2

]

The preceding result can be extended to the case of any axisymmetrical
Laguerre-Gauss mode LGn,m. It is well known that the paraxial diffraction
equation (relevant for finding the eigenmodes of a resonant cavity with weakly
spherical mirrors) admits solutions of the form (in polar coordinates)

Ψn,m(r, φ, z) =

√
2

πw(z)2
m!

(m+ n)!
exp(−r2/w(z)2) (2r2/w(z)2)n/2 L(n)

m [2r2/w(z)2]×

× exp(inφ) exp[−i(2m+n+1) arctan(z/zR)] exp[iπr
2/λR(z)] exp(2iπz/λ)

(7.42)
where the L(n)

m (x) are the Generalized Laguerre polynomials. λ is the wave-
length and zR the Rayleigh parameter. The functions w(z) and R(z) de-
termine respectively the width of the mode, and the curvature radius of its
wavefront. In what follows, we only need w(z). At the location zM of a mir-
ror, the normalized pressure distribution has therefore the general expression:

p(n)m (r) =
2

πw2

m!

(m+ n)!
exp(−2r2/w2) (2r2/w2)n L(n)

m (2r2/w2)2

depending on the parameter w ≡ w(zM). If the ratio a/w is large enough
that the diffraction losses are small, we can replace the finite upper bound
of integral (7.39) by +∞, and the Fourier-Bessel coefficients are simply:

p
(n)
k,m =

1

J0(ζk)2
exp

[
− ζ2kw

2

8a2

]
L(0)
m

(
ζ2kw

2

8a2

)
L
(0)
n+m

(
ζ2kw

2

8a2

)
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Figure 7.22: Pressure profiles. (0,0): dotted, (4,1): dashed, (5,5): solid

If the diffraction losses are not small, the preceding expression losses some
accuracy, but simultaneously the corresponding mode losses its practical in-
terest. The pressure profiles on the input mirror for some among the first
Laguerre-Gauss modes of parameter w = 3.5 cm are represented on Fig.7.22.
See on Fig.7.23 the intensity pattern of a LG5,5 (for instance) mode. The
integrated power (Fig.7.24) clearly shows a smoother distribution of power
on the mirror’s surface. Some examples of the virtual deformation of the
mirror’s surface under a pressure normalized to 1 N can be seen on Fig.7.25
with again w=4 cm. For the mirror’s size, we assume a radius a= 17.5 cm
and a thickness h= 10 cm. One clearly sees that the strain is a decreasing
function of the orders (n,m) of the mode.

7.10 Relative gains on thermal noise

With the current parameters a= 17.5 cm, h = 10 cm, w= 2 cm of the Virgo
input mirrors, if we insert the preceding p

(n)
k,m in equations 7.38 and 7.40, we
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Figure 7.23: Intensity pattern of a LG5,5 mode of Gaussian parameter w =
4 cm. The faint circle represents the edge of a 17.5 cm radius mirror (units:
m).
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Figure 7.24: Integrated power for LG5,5 (solid line) and LG0,0 (dashed line)
(w=3.5 cm)
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n=0, m=0 n=0, m=1 n=2, m=2 n=3, m=3 flat mode n=5, m=5

Figure 7.25: Deformation of a cylindrical mirror (a= 17.5 cm, h= 10 cm)
under a LGn,m readout beam (w = 4 cm) normalized to 150 MW (1 N
integrated radiation pressure), exaggerated by a factor of 108. The case of a
flat beam b = 11.3 cm is also shown

find for the fundamental:

U
(0)
input,0 = 2.02 10−10J.N−2 (7.43)

then, for the Virgo end mirrors (w= 5.54 cm):

U
(0)
end,0 = 7.43 10−11J.N−2 (7.44)

For comparison, with a flat mode of radius 11.3 cm, we have

Uflat = 1.88 10−11J.N−2 (7.45)

The gain in thermal noise are:

gend/input =

√√√√√
U

(0)
end,0

U
(0)
input,0

∼ 0.6

gflat/input =

√√√√ Uflat

U
(0)
input,0

∼ 0.3
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Figure 7.26: Diffraction losses vs ratio a/w for several LG modes

By increasing the order of the LG mode and the beam parameter w, it is
possible to reach gains comparable to this flat mode. For instance, with a
LG0,3 mode of parameter w = 4.5 cm, or a LG1,2 mode of parameter w =
4.78 cm, we get in both cases

U = 1.85 10−11J.N−2

meaning a gain of ∼ 0.3, and it is possible to do better. One must however
consider the diffraction losses when the width w of the mode becomes too
large compared to the mirror’s radius a (see Fig.7.26). For each mode, there
is a ratio a/w such that the losses fall to 1 ppm, and when comparing the
gains for various orders, it is more relevant to take equal losses modes. On
Fig.7.27 we show the ratio a/w insuring diffraction losses of 1 ppm, versus
orders of the mode. We finally show (Fig.7.28) the gains relative to the worse
situation of Virgo (input mirrors, LG0,0, w=2 cm) for several higher order
modes having each a w parameter adjusted to set diffraction losses at 1 ppm;
the gain of the flat mode of size 11.3 cm (having the same losses) is also
shown. Optimization of the beam parameter leads to symmetrical cavities
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having equally curved mirrors. Modes with m ≥ 2 give already similar or
better results than the flat mode.

To be specific, let us compute the spectral densities of displacement equiv-
alent to thermal noise in some cases. We assume a loss angle of φ = 10−6.
Firstly, in the case of a TEM0,0, w = 2 cm beam on a Virgo input mirror:

S1/2
x (f) = 1.03 10−19

[
100Hz

f

]1/2
m.Hz−1/2 (7.46)

for w = 3.5 cm:

S1/2
x (f) = 7.90 10−20

[
100Hz

f

]1/2
m.Hz−1/2 (7.47)

then for a flat mode of radius 11.3 cm:

S1/2
x (f) = 3.15 10−20

[
100Hz

f

]1/2
m.Hz−1/2 (7.48)

and now for a LG5,5, w = 3.5 cm:

S1/2
x (f) = 2.13 10−20

[
100Hz

f

]1/2
m.Hz−1/2 (7.49)

If we compare the 1st example (standard Virgo) to the third (in some “ad-
vanced Virgo”), we note a gain factor of ∼ 5 in sensitivity in the 100 Hz
region.

7.11 Conclusion and perspectives

It is possible to have a reduction of thermal noise comparable to or even
better than that obtained with flat modes, by using moderately high order
Laguerre-Gauss axisymmetrical modes. It seems beneficial that these modes
are compatible with spherical cavity mirrors instead of ”Mexican” surface
shapes. The diffraction losses on the end mirror would however be too large
in the present design (flat/spherical) of the Virgo cavities (2 cm waist on
flat input mirror). If the flat/spherical cavities are replaced by symmetrical
spherical/spherical cavities, that issue could be overcome. The question of
generation of such modes having complex annular patterns could be solved by



7.11. CONCLUSION AND PERSPECTIVES 407

the recently developed fiber technology (Bragg fibers)[39], allowing to design
fiber-lasers with analogous mode structures. A study of the optical stability
of such a cavity operating with a LGn,m mode is now necessary to confirm
that it could be practically operated this way. In particular, the issue of the
degeneracy of LGn,m modes having the same n+ 2m is to be addressed.
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Chapter 8

Thermoelastic noise

8.1 Introduction

The brownian motion of matter inside the substrates is not the only cause
of noise in the optical readout. There is another cause due to temperature
fluctuations in a finite volume of material. These fluctuations are called ther-
modynamical and can couple with strain via the thermal dilatation constant
α, producing eventually random motions of the surface. A good way for
modeling this kind of noise is to start from the general thermodynamical for-
mulas as detailed by Landau and Lifshitz [36], and use the Levin approach
already presented. As in the preceding chapter, we shall consider the low
frequency tail of the spectral density of the effective motion of the surface
(i.e. the readout noise) as depending on the energy dissipated when the body
is under a virtual pressure having the same profile as the optical beam and
excited at low frequency. In this case, the spectral density is still of the form
(Levin’s formula):

Sx(f) =
4kBT

ω2
W (8.1)

where W is the average dissipated energy. For the standard thermal noise,
we had W = 2UωΦ as average dissipated energy, Φ being a global loss
angle and U the static strain energy. But now W must be interpreted as
the energy dissipated via coupling of the strain with the temperature field
in the bulk. Obviously, the temperature field itself depends on the strain
field. Using the same approach as used in [34], we first solve the static linear
elastical problem (it is done in the preceding chapter), then we compute the
resulting temperature field, and use it to compute the dissipated energy. For

409
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computing the dissipated energy, we use the time dependence of the entropy
S. The variations of the entropy density are related to the heat flux ~q by
requiring conservation of the energy in the body:

T
∂S

∂t
= − div(~q) (8.2)

where ~q = −K gradT , K being the thermal conductivity of the material
(cf.Landau and Lifshitz [36]). Or, as well:

∂S

∂t
= − 1

T
div(~q)

The total entropy variation in the body is therefore:

dStot

dt
= −

∫
1

T
div(~q) dV

where the integral is extended to the whole body. this is as well:

dStot

dt
= −

∫
div

~q

T
dV +

∫
~q.grad

(
1

T

)
dV

Owing to the fact that the heat flux is zero on the surface of the body, the
first integral vanishes, and we have:

dStot

dt
= −

∫
1

T 2
~q.gradT dV

but using the definition of ~q, this is:

dStot

dt
=

∫
K

T 2
(gradT )2 dV

so that the energy variation is :

W = T
dStot

dt
=
∫
K

T
(gradT )2 dV (8.3)

We shall say now that the temperature gradient field is caused by the small
deformations of the body that we have computed precedingly, while T is the
mean temperature. This becomes:

W = T
dStot

dt
=

K

T

∫
(grad δT )2 dV (8.4)
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Where we have replaced T by a δT in the gradient for more clarity. On the
other hand, it is well known (cf. Landau-Lifshitz) that the total entropy is
the sum of two terms, one being the entropy in the reference state, and a
second one proportional to the trace E of the strain tensor:

S = S0 + νE

ν being the thermoelastic coefficient. so that there is in the bulk material a
power source given by

P = T.
dS

dt
= ν T

dE

dt

where E is the trace of Eik. The resulting temperature field obeys the Heat
(Fourier) equation:

(ρC∂t −K∆) δT = ν T
dE

dt
(8.5)

The trace of the strain tensor Eik found in the preceding chapter is in any
case a harmonic function, so that there is a trivial solution:

δT =
νT

ρC
E

The boundary conditions (null heat flux on the surfaces) are considered sat-
isfied in time average (δT is assumed oscillating at a few tens of Hz).In fact,
they are exactly satisfied on the circular edge of the mirror. Now we reach
the relevant equation for the dissipated energy:

W =
Kν2T

ρ2C2

∫
(gradE)2 dV (8.6)

ν is related to the linear dilatation coefficient α by

ν =
αY

1− 2σ

where Y is the Young modulus, and σ the Poisson ratio. Finally:

W = KT

[
αY

(1− 2σ)ρC

]2 ∫
(gradE)2 dV (8.7)

(see [34]). We have after the preceding chapter on standard thermal noise
all the material for computing W .
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8.2 Case of infinite mirrors

Let us recall the results obtained in the preceding chapter on standard ther-
mal noise. Under beam pressure, the displacement vector is:

ur(r, z) =
∫ ∞

0
u(k) [kz − 1 + 2σ] exp(−kz) J1(kz) k dk (8.8)

uz(r, z) =
∫ ∞

0
u(k) [kz + 2− 2σ] exp(−kz) J0(kz) k dk (8.9)

so that:

E(r, z) = div ~u(r, z) = −2(1−2σ)
∫ ∞

0
u(k) exp(−kz) J0(kz) k2 dk (8.10)

The function u(k) is determined by the virtual pressure distribution p(r).
Namely:

u(k) = −1 + σ

Y

p̃(k)

k
(8.11)

where p̃(k) is the Fourier-Bessel transform of p(r). As a result,

E(r, z) = − 2(1− 2σ)(1 + σ)

Y

∫ ∞

0
p̃(k) exp(−kz) J0(kr) k dk

Which shows, in passing, that

E(r, 0) = − 2(1− 2σ)(1 + σ)

Y
p(r)

We can thus already foresee that in the case of an ideally flat top beam, the
gradient will involve Dirac distributions, and therefore the volume integration
of its square will be problematic. Let us compute the gradient of E:

∂E

∂r
=

2(1− 2σ)(1 + σ)

Y

∫ ∞

0
p̃(k) exp(−kz) J1(kz) k2 dk

∂E

∂z
=

2(1− 2σ)(1 + σ)

Y

∫ ∞

0
p̃(k) exp(−kz) J0(kz) k2 dk

Now, using the closure relation

∫ ∞

0
Jν(kr) Jν(k

′r) r dr =
δ(k − k′)

k
(8.12)
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for ν = 0, 1. It is now possible to carry out the volume integration:

2π
∫ ∞

0
r dr

∫ ∞

0
dz ( ~gradE)2 = 8π

(1− 2σ)2(1 + σ)2

Y 2

∫ ∞

0
p̃(k)2 k2 dk (8.13)

so that

W =
KTα2(1 + σ)2

ρ2C2

∫ ∞

0
p̃(k)2 k2 dk (8.14)

This expression shows that the function p̃(k) must have an asymptotic behav-
ior better than k−3/2 for the integral to converge. This is a strong requirement
on the Fourier transform of the pressure distribution.

8.2.1 Gaussian beams

For a gaussian profile of half width w, we have seen that:

p̃(k) =
1

2π
exp

[
−k2w2/8

]

giving ∫
( ~gradE)2 dV =

4(1− 2σ)2(1 + σ)2√
πY 2w3

(8.15)

so that the spectral density of thermoelastic noise is, using (8.1) and (8.7):

Sx(f) =
4kBKT

2α2(1 + σ)2√
π ρ2C2 f 2w3

(8.16)

This result has been found firstly by Braginsky et al.[35], then by Liu et
al.[34], using the preceding approach. For silica parameters:

K ∼ 1.4 W.m−1.K−1

α ∼ 5.4 10−7 K−1

ρ ∼ 2, 202kg.m−3

C ∼ 7, 500 J.kg−1.K−1

on finds:

Sx(f)
1/2 = 2.68 10−20

[
1 Hz

f

]
m.Hz−1/2

which is lower than the standard thermal noise, but almost significant. For
the end mirrors (w = 5.54 cm) , this is:

Sx(f)
1/2 = 5.81 10−21

[
1 Hz

f

]
m.Hz−1/2
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8.2.2 Flat beams

If we now consider a flat beam modeled by its ideal representation:

p(r) =

{
1/πb2 (r < b)
0 (r ≥ b)

we have the Fourier-Bessel transform:

p̃(k) =
J1(kb)

π kb

which shows that the requirement on the decreasing rate for large k is not
fulfilled, Jν(k) having an asymptotic behavior in k−1/2. If we try to compute
the integral, we get:

∫
( ~gradE)2 dV =

8(1− 2σ)2(1 + σ)2

πb3

∫ ∞

0
J1(x)

2 dx

wich is a divergent integral.This is the consequence of our preceding remark
on the discontinuity of the pressure. For fun, we note that ”Mathematica”
nevertheless gives a finite (and rather strange) result:

∫ ∞

0
J1(x)

2 dx =
Ln(64)− 4 + 2γ

2π

(γ = Euler’s constant). We meet two conclusions: the first is that we must
carry out a numerical integration with the ”realistic” flat modes detailed in
the preceding chapter, the second is that we must be cautious with results
of symbolic computation softwares.

8.3 Case of finite mirrors

In the case of finite mirrors, the model developped for standard thermal noise
provides the explicit expressions for the trace E of the strain tensor:

E(r, z) = E0(r, z) + ∆E(r, z)

with

E0(r, z) = − 2(1− 2σ)(1 + σ)

πa2Y

∑

m>0

pm
Dm

J0(ζmr/a)
[
um e−ζmz/a − vm eζmz/a

]
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where the pm are the Fourier-Bessel coefficients of the pressure distribution,
and where the Dm have been defined in the preceding chapter. The um, vm
are:

um = 1− qm + 2qmxm, vm = qm(1− qm + 2xm)

qm and xm have also the same definitions. Moreover,

∆E(r, z) = −1− 2σ

πa2Y
[1− 12s− (1− 24s)z/h]

so that the gradient of E is:

∂E0

∂r
=

2(1− 2σ)(1 + σ)

πa3Y

∑

m>0

pmζm
Dm

J1(ζmr/a)
[
um e−ζmz/a − vm eζmz/a

]

(8.17)
∂E0

∂z
=

2(1− 2σ)(1 + σ)

πa3Y

∑

m>0

pmζm
Dm

J0(ζmr/a)
[
um e−ζmz/a + vm eζmz/a

]

(8.18)
∂∆E

∂z
=

1− 2σ

πa2hY
(1− 24s) (8.19)

Owing to the orthogonality relations for the Jν(ζmr/a), we get
∫
( ~gradE0)

2 dV =
4(1− 2σ)2(1 + σ)2

πa3Y 2

∑

m>0

wm (8.20)

where

wm =
p2mζm
D2
m

J0(ζm)
2 (1− qm)×

×
[
(1− qm)(1− q2m) + 8qm(1− qm)xm + 4qm(1 + qm)x

2
m

]

and obviously,
∫
( ~grad∆E)2 dV =

(1− 2σ)2

πa2hY 2
(1− 24s)2

(NB: ~grad∆E and ~gradE0 are orthogonal in the r integration). We have
successively:

W =
4KTα2

πa3ρ2C2

[
(1 + σ)2

∑

m>0

wm + (1− 24s)2
a

4h

]

And for the spectral density:

Sx(f) =
4kBKT

2α2

πa3ρ2C2f 2

[
(1 + σ)2

∑

m>0

wm + (1− 24s)2
a

4h

]
(8.21)
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8.3.1 Gaussian beams

For gaussian beams, we substitute the pm’s in the preceding formulae. For
the parameters corresponding to Virgo input mirrors (w =2 cm, a = 17.5
cm, h = 10 cm, we find:

S1/2
x (f) = 2.76 10−20 m.Hz−1/2

[
1 Hz

f

]

slightly worse than the infinite case. For w = 5.54 cm (end mirrors):

S1/2
x (f) = 8.20 10−21 m.Hz−1/2

[
1 Hz

f

]

in Fig.8.1, one sees the distribution of (gradE)2 in the case of an input Virgo
mirror. which is worse than the infinite case.

8.3.2 Flat modes

The same drawback happens in the case of ideally flat modes. The sharp edge
generates high spatial frequencies that forbid the Fourier-Bessel coefficients
pm to have a decreasing rate able to secure the convergence of the series. One
more time we have to numerically compute the pm for realistic flat modes.
The result for a Virgo-like mirror (a = 17.5 cm, h = 10 cm) and for a realistic
mode (b = 10 cm, w0 = 3.2 cm), is:

S1/2
x (f) = 4.89 10−21 m.Hz−1/2

[
1 Hz

f

]
(8.22)

It is weakly dependent on the parameter w0 (sharpness of the beam’s edge).
To be specific, for w0 = 1 cm, this is

S1/2
x (f) = 4.92 10−21 m.Hz−1/2

[
1 Hz

f

]2

On Fig.8.2, we have represented the distribution of (gradE)2 for a realistic
flat mode (b = 10 cm, w0 = 1 cm). Note the two ”hot” points corresponding
to the regions where the gradient is the largest. When sharping the edge,
these points become hoter and hoter, yielding a singularity in the limit of an
ideal flat top beam.
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Figure 8.1: Distribution of the square gradient of the temperature in the case
of a gaussian beam. (Logarithmic scale, arbitrary units)
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Figure 8.2: Distribution of the square gradient of the temperature in the case
of a realistic flat beam. (Logarithmic scale, arbitrary units)



Chapter 9

Modulation and Transfer
functions

9.1 Introduction

Analysis of the statistical structure of noise at the output of gravitational
wave interferometers like LIGO or Virgo is essential regarding two different
tasks, that are the commissionning of the instrument and the signal process-
ing. During the first test runs of the new instrument, identification of special
types of noise will be a valuable aid to diagnostics and correction for bias.
During the regular exploitation period, many filtering techniques requiring
a good knowledge of the spectral density of the instrument noise will be
running on line. Moreover, it will be necessary to permanently control the
stationarity of statistical parameters. A correct association between noise
characteristics and parts of the instrument requires information about the
transfer functions relating elementary perturbations of these elements and
output at the different ports of the interferometer. In the present study, we
show how to systematically construct these transfer functions, starting from
elementary objects like mirrors and space between them, in a way easily done
numerically, increasing the reliability of the results with respect to long spe-
cial analytical formulas. These elementary objects are so simple that one can
rely on them, then the proper algebra being defined, one has simply to code
the simple general analytical formulas, and the correct result is automatically
obtained. We shall present as first results and examples, transfer functions
for the motions of mirrors, for laser frequency fluctuations, for the modulator

419
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frequency fluctuations, and for a gravitational wave. The last one is necessary
for evaluating the spectral densities of gravitational amplitudes equivalent to
the various sources of noise and add them in a consistent way for obtain-
ing the spectral sensivity of the instrument. The modulation/demodulation
system plays an essential role in the derivation of transfer functions, and we
give the expressions for a lock in detection with a given phase lag. A spe-
cial attention is devoted to the question of modulated quantum noise. This
approach is especially well adapted to object-oriented coding.

9.2 Elementary perturbations and audio side-

bands

The basic elements constituting an interferometer are the mirrors and the
vacuum space in between them. The possible perturbations reduce conse-
quently to two kinds : changes in position of the mirrors, and changes in the
vacuum properties due to a passing GW. In the present approach, we shall
describe the light beams circulating in the instrument as plane waves and
mirrors as flat surfaces. In other words, we consider only the projection of
the amplitudes on the TEM00 mode.

9.2.1 Perturbation of mirrors by small displacements

Small displacements of mirrors must be considered either for actual displace-
ments (e.g. pendulum thermal noise), for distortions globally equivalent to a
displacement of the hot spot on the coating (e.g. substrate thermal noise) or
for any phase perturbation mathematically equivalent to a displacement (e.g.
scattered light recombination). This comprises a large class of phenomena.
We shall assume infinite flat mirrors, and as only allowed perturbation, a
displacement of the reflecting surface along its normal. This is not a loss of
generality because other perturbations can be shown to eventually reduce to
an equivalent longitudinal displacement. For instance this has been shown
in detail [29],[30] for excited internal degrees of freedom of a real mirror if
coupled to the beam phase (internal thermal noise). In the case of scattered
light, the noisy recombination effect takes place on the mirror’s surface and
generate a phase that cannot be distinguished from a displacement phase.
We restrict our attention to motions, or equivalent motions, x(t) of ampli-
tude very small compared to a wavelength, so that a first order expansion is
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allowed, and all further computations are linear with respect to the displace-
ment x. We shall moreover consider x(t) as a zero mean random process
of spectral density x2(f) and will refer to x(f) as its ”root spectral density”
(RSD). Thanks to the linarity of the calculations, it is allowed and convenient
to consider x(f) as the amplitude of a Fourier component of the motion at
frequency f , and study the situation created by this elementary harmonic
perturbation : The result is to add two sidebands to the main wave, so that
the amplitude of light anywhere in the interferometer is modulated, i.e. of
the form

A(t) =
(
A0 +

1

2
Φ(f)A1e

−iΩt +
1

2
Φ(f)A2e

iΩt
)
e−iωLt (9.1)

where ωL/2π is the laser frequency, and Ω ≡ 2πf . Φ(f) = 4πx(f)/λ is
the RSD of phase equivalent to the displacement. This form will hold quite
generally, whatever the cause of the phase fluctuation is. Because we intend
to study the noise in the detection band (a few Hz to a few kHz), we call these
”audio” sidebands. Assume a wave of the preceding form is reflected by our
moving mirror, the incidence angle being θ (almost all incidence angles in the
interferometer are zero, except on the splitter, which leads us to consider the
general case); provided that the incident wave is propagating to the right, the
reflected amplitude B(t) is given by B(t) = i r A[t − 2x(t) cos θ/c], because
the reflected wave experiences then an extra delay. Obviously, if the incident
wave now comes from the right, we have to replace x by −x. We have

B(t) = i r
(
A0 e

−iωL(t−2x cosθ/c) +
1

2
Φ(f)A1e

i[(ωL+Ω)(t−2x cosθ/c)

+
1

2
Φ(f)A2e

i[(ωL−Ω)(t−2x cosθ/c)
)

(9.2)

The factor of i is inserted for taking into account the necessary relative
phase of π/2 between the reflected and the transmitted wave at each partial
reflection (all transmission coefficients will be thus taken real). Substituting
x(t) = x(f) cos(Ωt) and expanding this expression at first order leads to

B(t) = A0 e
−iωLt

(
1 +

2 i πx(f) cosθ

λ
e−iΩt +

2 i πx(f) cosθ

λ
eiΩt

)

+
1

2
Φ(f)A1e

−i[(ωL+Ω)t +
1

2
Φ(f)A2e

−i[(ωL−Ω)t (9.3)
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This verifies that the structure (carrier+2 sidebands) is stable and conse-
quently it is allowed representing the modulated amplitudes by 3-vectors as
: A = (A0, A1, A2). Reflection is then a linear operator, and we can write,
for a mirror of photometric reflectivity r, and for a wave coming from the
left :

B = i r R A

the operator R having the form

R =



1 0 0
i cos θ 1 0
i cos θ 0 1


 (9.4)

If the wave is coming from the right, we have to change the sign of the
non diagonal elements. This means that a mirror has two operators : a
left side reflection operator R, and a right side operator R = R−1. This
sign convention is quite arbitrary, and is of no consequence if we consider
only one perturbed mirror in a given configuration. But if we intend to
study coherent motions of pairs of mirrors, (common modes, or differential
modes, for instance), we have to be careful with the signs. With this operator
notation, R10 for instance, is a transfer function relating the upper sideband
amplitude to the RSD of phase Φ(f) = 2kx(f).

9.2.2 Perturbation of a vacuum by a gravitational wave

A passing gravitational wave will perturb light-distance measurements due
to small changes in the space-time metrics. Assume a GW of amplitude h
and frequency f = Ω/2π propagating along the z direction, having the +
polarization. A photon travelling along the x or y direction and detected at
time t after a round trip of length 2L, was emitted at the retarded time

tr = t− 2L

c
− ǫ

hL

c
sinc(ΩL/c) cos[Ω(t− L/c)]

where ǫ = ±1 depending on the direction x or y ([27]). Consider now a
wave already modulated at the gravitational frequency f , i.e. having two
sidebands proportional to h, of the form

A(t) =

(
A0 +

h

2
A1e

−iΩt +
h

2
A2e

iΩt

)
e−iωt
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The propagated amplitude B(t) is nothing but the incoming wave taken at
the retarded time, i.e.

B(t) = A(tr)

so that we obtain

B(t) =

(
B0 +

h

2
B1 e−iΩt +

h

2
B2 eiΩt

)
e−iωt

with (we set K ≡ ΩL/c):

B0 = e2ikL A0

B1 = e2i(k+K)L A1 − iǫkL sinc(KL)ei(2k+K)L A0

B2 = e2i(k−K)L A2 − iǫkL sinc(KL)ei(2k−K)L A0

This can be represented as the action of the operator (see [1]) :

P (2L) =



e2ikL 0 0
i ǫ ei(2k+K)Lsinc(KL) e2i(k+K)L 0
i ǫ ei(2k−K)Lsinc(KL) 0 e2i(k−K)L


 (9.5)

on vector amplitudes. According to the above outlined philosophy, the diago-
nal terms express the phase factor corresponding to ordinary propagation in a
vacuum of waves of frequency νL, νL+f, νL−f respectively, whereas P (2L)10
must be understood as the transfer function relating the upper sideband am-
plitude to the RSD of phase Φ(f) = kh(f)L. Obviously, the off-diagonal
terms evaluate the creation of sidebands by the GW, and are the seed of the
whole detection process in an interferometer; however they may be signifi-
cantly different from zero only on very long distances. Though the preceding
expression is valid in general, the off-diagonal terms will be considered only
in the case of propagation in the km long Fabry-Perot cavities.

9.2.3 Algebra of first order perturbations

Any history of modulated light through the interferometer is thus repre-
sented by a product of propagation and reflection rank 3 operators, and
consequently, a matter of algebra. The general form of any operator is :

O =



O00 0 0
O10 O11 0
O20 0 O22


 (9.6)
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The product of two operators A, B is

(AB) =



(AB)00 = A00B00 0 0
(AB)10 = A10B00 + A11B10 (AB)11 = A11B11 0
(AB)20 = A20B00 + A22B20 0 (AB)22 = A22B22




(9.7)
For the inverse A−1 of any operator A, we have :

A−1 =



(A−1)00 = 1/A00 0 0
(A−1)10 = −A10/A00A11 (A

−1)11 = 1/A11 0
(A−1)20 = −A20/A00A22 0 (A−1)22 = 1/A22




(9.8)
This is a non commutative algebra we call A for brevity, isomorphous to the
algebra of first order expansions, it is very simple, very fast (there is no need
of a general matrix inversion) , and easy to implement in a numerical code.
We show hereafter how for any complex optical scheme, it is possible using
A to compute global transmission and reflection operators between an input
point and any output point. We have presented for the sake of clarity the full
three dimensional version of this algebra, and one could argue a redundancy,
due to the fact that (02) (resp. (22)) components can be deduced from
(01) (resp (11)) components by simply changing Ω into −Ω. In a numerical
scheme, however, it is anyway necessary to evaluate all the components, and
consequently using rank 3 operators (in practice 5 components objects) is
not a waste of time nor memory.

9.3 Interferometer operators

9.3.1 Cavity

The basic parameters of a mirror are the reflection coefficient r, the transmis-
sion coefficient t and the loss rate p. The power balance reads r2+ t2 = 1−p.
A Fabry-Perot cavity consists of two mirrors, a coupling mirrorM1 of param-
eters r1, t1, p1 and a maximum reflectance mirror M2 of parameters r2, t2, p2,
separated by a vacuum gap of length L. The equation relating the incoming
field Ain and the intracaviy field B is

B = t1Ain − r1r2R1P (L)R2P (L) B (9.9)

in this expression we note that the transmission is represented by a pure
scalar, owing to the fact that a motion of the transparent sustrate of the
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mirror does not affect the phase of a transmitted wave, we note that the
R2 operator has been conjugated (or inverted) because the normal to M2

is in the opposite direction with respect to that of M1. We shall consider
separately the effects of perturbations, so that either P (L) is gravitationnally
perturbed and then R1, R2 reduce to identity, or M1 or M2 is moving and
then P (L) is diagonal. We have

B =
(
1 + r1r2R1P (L)R2P (L)

)−1
t1Ain (9.10)

Concerning the field Aref reflected off the cavity, we have

Aref = i r1R1Ain + i t21r2P (L)R2P (L)B (9.11)

(remember that R1 corresponds to a reflection at the left side, and R1 at the
right side of M1). We find Aref = i F Ain with the general formula :

F = R1

[
r1 + (1− p1)r2R1P (L)R2P (L)

] [
1 + r1r2R1P (L)R2P (L)

]−1

(9.12)
We can say that F is the Fabry-Perot reflectance operator. It contains three
possible pertubations we enumerate below. Though it is quite useless to know
the details of the operators in a numerical scheme, where we stick to synthetic
algebraic expressions as the preceding one, instead of long special analytical
formulas, it is nevertheless interesting to see the effect of these perturbations
on the cavity A operator. We have the following general structure :

F =



F0 0 0
G1 F1 0
G−1 0 F−1


 (9.13)

• GW event :

F = [r1 + (1− p1)r2P (2L)] [1 + r1r2P (2L)]
−1 (9.14)

M1 and M2 are pure scalars and P (2L) is the perturbed propagator.
we have here,

Fµ =
r1 + (1− p1)r2e

2i(k+µK)L

1 + r1r2e2i(k+µK)L
(µ = −1, 0, 1) (9.15)

(ordinary reflectance for the carrier and the two sidebands),

Gµ = i ǫ
r2t

2
1e
i(2k+µK)Lsinc(KL)

(1 + r1r2e2ikL) (1 + r1r2e2i(k+µK)L)
(µ = −1, 1) (9.16)
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which represents the sidebands amplitudes created by the cavity while
the GW event, with respect to the incoming carrier’s.

• Motion of the coupling mirror M1

F = R1 [r1 + (1− p1)r2R1P (2L)] [1 + r1r2R1P (2L)]
−1 (9.17)

P (2L) is diagonal and M2 scalar. The components Fµ are the same as
in the precedent item, but now :

Gµ = − i

(
r2t

2
1e

2ikL

(1 + r1r2e2ikL) (1 + r1r2e2i(k+µK)L)
− F0

)
(9.18)

• Motion of the far mirror M2

F =
[
r1 + (1− p1)r2P (L)R2P (L)

] [
1 + r1r2P (L)R2P (L)

]−1
(9.19)

P (L) is diagonal and M1 scalar. The elements Fµ are still unchanged,
and the Gµ are now :

Gµ = i
r2t

2
1e
i(2k+µK)L

(1 + r1r2e2ikL) (1 + r1r2e2i(k+µK)L)
(9.20)

(The change of sign with respect to the coupler formula comes from
the opposite orientation of the normal). Note the close similarity
between the GW case and an M2 far mirror motion of amplitude
x(f) = 1

2
h(f)L. At low frequencies the sinc function can be replaced

by 1 and the two formulas become identical.

9.3.2 Michelson

A GW Michelson interferometer like LIGO or Virgo involves two arms con-
taining each a Fabry-Perot cavity. For more clarity we can denote by ”North”
and ”West” the directions of the arms without loss of generality. Knowing
the operators Fnorth, Fwest of both cavities, maybe having different param-
eters M1,M2, L due to unavoidable asymmetries, it is easy to compute the
transmittance Tmic and the reflectance Rmic of the Michelson. We denote by
Ms the splitter of parameters rs, ts, ps, by a and b the short distances (see
Fig.9.1) then the transmittance is



9.3. INTERFEROMETER OPERATORS 427

1

F2

F

transmitted light

l a

b

North

West

light in

reflected light

Figure 9.1: General setup for a Power recycled interferometer

Tmic = −rsts
(
R−1
s P (a)FnorthP (a) + P (b)FwestP (b)Rs

)
(9.21)

Let us note that the motion of any mirror can be considered as the sum of a
motion along its normal, and a motion orthogonal to it. Only the normal part
gives rise to a phase lag. There is therefore no ambiguity in the definition of
the left and right sides of the splitter Ms : these are determined with respect
to the right oriented normal. For the reflectance, we get

Rmic = t2sP (a)FnorthP (a)− r2sRsP (b)FwestP (b)Rs (9.22)

In these expressions, P (a) and P (b) can be understood as diagonal, ne-
glecting a possible GW perturbation on so short distances. In the operator
Rs, the incidence angle is taken as π/4.
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9.3.3 Recycled interferometer transmittance and re-

flectance

A recycling interferometer is a cavity involving a recycling mirror Mr of
parameters rr, tr, pr at a distance l of a Michelson (see Fig.9.1). Elementary
calculations lead to the transmittance Titf and the reflectance Ritf of the
whole system.

Titf = trTmicP (l)
[
1 + rrR

−1
r P (l)RmicP (l)

]−1
(9.23)

Ritf = Rr

[
rr + (1− pr)R

−1
r P (l)RmicP (l)

] [
1 + rrR

−1
r P (l)RmicP (l)

]−1

(9.24)
At this point, we are able to compute the transmission of a wave of arbi-
trary frequency through the interferometer, and moreover the amplitude of
the sidebands created inside by the motion of any mirror or a passing GW.
Moreover, we can do it by a constructive approach, without handling in-
tricate analytical formulas : Once given the elementary operators (mirrors,
propagator), a code can build the cavity operators, the Michelson operators
and eventually the interferometer’s by using A and synthetic expressions like
(9.23,9.24). Any other port inside the interferometer can be treated the same
way. It is straightforward, using the same principles, to insert an input or
output mode-cleaner. For instance, TMC being the mode-cleaner A operator,
We have simply for the global transmission of the system :

Tglob = Titf TMC

because mode-cleaners are designed (ring cavities) for suppressing reflected
waves, there is no cavity between the MC and the interferometer.

The same way, it is possible to associate a global operator describing the
transfer from input light to any point of the interferometer. For instance,
apart from the main port on which we have focused unitl now, at least two
other ports are of interest (see Fig.9.2), namely the detector receiving a
part of the light reflected by the interferometer (port #2), and the detector
receiving the light coming from the unavoidable spurious reflection off the
back face (coated for anti-reflection) of the splitter (port #5). The operator
associated with port #2 is clearly

T2,glob = Ritf TMC
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Figure 9.2: Location of the interferometer ports

(this is why it is necesary to compute Ritf ). For port #5, it is convenient to
define, baside the operators Rmic and Tmic related to the Michelson part, a
new operator :

T5,mic = iPa Fnorth Pa

This allows to compute the corresponding operator when recycling is applied
(formula formally identical to 9.23) :

T5,itf = trT5,micP (l)
[
1 + rrR

−1
r P (l)RmicP (l)

]−1

then the operator associated with port 5 is simply

T5,glob = T5,itf TMC

9.4 Tuning the interferometer

It is essential for understanding the results that we report below, to describe
how the various cavities and the interferometer itself are tuned. All informa-
tion on the tuning is contained in the various propagators encountered. In
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these propagators, especially in long (km) distance operators, huge phases
involving the laser frequency, as 2πνLL/c appear, and are difficult to numer-
ically take into account without a special care. For a light of wavelength
1.064 µm, and 3 km propagation, we get kL ∼ 17, 715, 748, 046.558, 983 Rd,
value in which a variation of the last digit is enough to change the phase
reflectance of a high finesse cavity by π/2. If we keep the full value of phases,
we loss any precision on the fine tuning. In other words, it is difficult to
handle the same way kilometers and picometers. We try therefore to extract
from all phases a large static value that proves irrelevant in the calculations.
To obtain this result, we shall consider that the lengths of the various cavi-
ties present in the interferometer are kept nearly resonant for the laser light
(carrier). Possible departures from resonance will be expressed with respect
to the resonant length. This way it is possible to get rid of the exact car-
rier frequency, and consider only offsets with respect to that frequency for
describing for instance the transmission of sidebands.

9.4.1 Tuning long cavities

The optical length L of a long cavity can be considered as the sum of a
resonant part L0, plus a small detuning δL that we can express as a fraction
σ of the linewidth of the cavity (of finesse F) :

δL = σ × λ

2F
with −1 ≤ σ ≤ 1. The parameter σ allows to examine special modes of
operation of the interferometer assuming detuned cavities, or to represent
DC servo errors. Resonance obviously corresponds to σ = 0. We may as-
sume L0 = (4n + 1)λ/4 where n is the largest integer less than 4L/λ. The
propagator’s phase kL appearing in P (L) (see Eq.9.5) is thus :

kL =
2π

c
(νL + δν)

(
L0 + σ

λ

2F

)

where δν represents an offset with respect to the laser frequency caused for
instance, as will be seen in the next section, by the modulation. The result
is

kL =
π

2
+ π

[
δν

∆νFSR
+

(
1 +

δν

νL

)
σ

F

]
(mod 2π) (9.25)
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∆νFSR = c/2L is the free spectral range of the cavity. It might be thought
that we failed to get rid of the laser frequency νL, but the way it enters
the last formula is now much less dangerous, because is appears in a small
correction factor (even negligible in certain cases), and a high precision value
is no more needed for it. The argument KL appearing in some components
of P (L) is simply

KL = π
f

∆νFSR
(mod 2π) (9.26)

9.4.2 Tuning at a dark fringe

At the main output of the interferometer, two partial waves returning from
the two arms interfere, and it is well known that the optimum signal to noise
ratio is obtained when the the optical path difference between the two arms
is such that the extinction is a maximum. The relevant information on this
is contained in the (00) component of the Tmic operator, namely

[Tmic]00 = rsts
(
e2ika[Fnorth]00 + e2ikb[Fwest]00

)

Assume that the short arms lengths a, b are integer multiples of the laser
wavelength plus a small offset δ :

a = a0 + δλ/4 , b = b0 − δλ/4

with a0 = naλ, b0 = nbλ. At the laser frequency (δν = 0), we have

|[Tmic]00(νL)| = rsts
(
|[Fnorth]00(νL)| + eiϕ |[Fwest]00(νL)|

)

where

ϕ =
4πνL
c

(b− a) − Arg[Fnorth]00(νL) + Arg[Fwest]00(νL)

The dark fringe at the laser frequency corresponds to ϕ = π (mod 2π).
This is obtained if

δ = δ0 +
1

2
+

Arg[Fwest]00(νL)− Arg[Fnorth]00(νL)

2π
(9.27)

where δ0 represents a possible offset with respect to the dark fringe caused
for instance by a DC servo error. This being calculated, the phase factors
ka, kb of the propagators P (a), P (b) are given by

ka = 2π a0
c
δν + π

2

(
1 + δν

νL

)
δ (mod 2π)

kb = 2π b0
c
δν − π

2

(
1 + δν

νL

)
δ (mod 2π)

(9.28)
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9.4.3 Tuning the recycling cavity

The recycling resonance allows to increase the power reaching the splitter.
The recycling cavity (recycling mirror + Michelson) , of length l, is at reso-
nance when

D = |1 + rrec[Rmic]00e
2ikl|

is a minimum. At the laser frequency, this is

D(νL) = 1 + rrec|[Rmic]00(νL)| eiψ

where

ψ = 4πνLl/c +Arg[Rmic]00(νL)

We assume a length l = l0 + µλ/4 where l0 is an integer multiple of λ and
µ an adjustable parameter. We get

ψ = µπ +Arg[Rmic]00(νL)

The minimum of D(νL) is attained when ψ = π (mod 2π), which yields

µ = µ0 + 1− Arg[Rmic]00(νL)

π

µ0 allowing to take into account a possible offset with respect to resonance.
We have thus for the argument kl entering the propagator P (l) :

kl =
2πl0
c

δν +
π

2

(
µ0 + 1− Arg[Rmic]00(νL)

π

) (
1 +

δν

νL

)
(mod 2π)

(9.29)

9.5 Modulation, Detection, Demodulation and

Transfer functions

9.5.1 General case

The optical wave entering the interferometer is not a simple monochromatic
wave. It is passed through a phase modulator in order to translate the
detection band in a high frequency region where the laser frequency noise is
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lower. The action of an ideal phase modulator is analogous to a transmittance
of the form

T (t) = e−iκ sinωt (9.30)

where ω = 2πfm, fm being the modulation frequency. The parameter κ is the
modulation depth. If the laser output amplitude is Ae−iωLt, the modulated
amplitude A′(t) is a sum of a carrier and partial waves we call ”rf sidebands”
because fm is of the order of a few MHz.

A′(t) = A
∑

p∈Z
Jp(κ)e

−i(ωL+pω)t (9.31)

The interferometer contains a number of points where it is useful to detect
the light amplitude. The main is obviously the dark fringe, from where
the gravitational information is expected to come, but the field reflected by
the recycling mirror, the field weakly transmitted by the end mirrors, some
spurious reflections, are also of some interest for the control of the instrument.
Each of these amplitudes can be computed by the constructive way outlined
above, giving a suitable operator S ∈ A. The component S00(ν) depends only
on the frequency ν of the light source, whereas S10(ν, f), S20(ν, f) depend
also on the perturbation frequency. We shall use the following notation,
defining transfer coefficients for each discrete Fourier component of the light
amplitude :

tp = S00(νL + p fm)
t+p = S10(νL + p fm, f)
t−p = S20(νL + p fm, f)

(9.32)

We can then write the amplitude B(t) at the considered port :

B(t) = Ae−iωLt


∑

p∈Z
tp Jp(κ)e

−ipωt +
1

2
Φ(f)

∑

p∈Z
t+p Jp(κ)e

−i(pω+Ω)t

+
1

2
Φ(f)

∑

p∈Z
t−p Jp(κ)e

−i(pω−Ω)t


 (9.33)

where we see that the effect of the perturbed interferometer is to add two
audio sidebands to every rf sideband. The power is, treating the t±p as first
order terms :

P (t) = B(t)B(t) = P0


 ∑

p,q∈Z
tptqJpJqe

−i(p−q)ωt+
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1

2
Φ(f)

∑

p,q∈Z
(t+p tq + tpt−q )JpJqe

−i[(p−q)ω+Ω]t+

1

2
Φ(f)

∑

p,q∈Z
(t−p tq + tpt+q )JpJqe

−i[(p−q)ω−Ω]t


 (9.34)

where Jp is a shorthand notation for Jp(κ). The end of the process is a mixing
with a demodulation current of the form

D(t) = sin(ωt+ ξ)

where ξ denotes the demodulation phase, followed by a low pass filtering
suppressing frequencies equal or higher than fm. ξ = 0 gives the in-phase
demodulation current, and ξ = π/2 the quadrature. It is therefore clear that
in the preceding sum, only terms such that p − q = ±1 will contribute the
demodulated filtered current. We can thus write the contributing part Peff
of the detected power as :

Peff(t)/P0 = a0e
−iωt +

(
1

2
Φ(f) a+ e−i(ω+Ω)t +

1

2
Φ(f) a− e−i(ω−Ω)t

)
+ c.c

(9.35)
where the coefficients ak have the following definitions :

a0 =
∑
p∈Z JpJp−1tptp−1

a+ =
∑
p∈Z JpJp−1(t

+
p tp−1 + tpt

−
p−1)

a− =
∑
p∈Z JpJp−1(t

−
p tp−1 + tpt

+
p−1)

(9.36)

The demodulated, filtered current (DFC) at frequency f is :

DFC(t) =
1

4i

[
(a+ eiξ − a− e−iξ)e−2iπft + c.c

]
Φ(f) (9.37)

The function DFC(t) is given up to an arbitrary amplitude depending on
the tuning of the various amplifiers of the detection chain. Anyway, we
are going to compare one another the DFC’s due to different causes, and
the undetermined common amplitude plays no role in the discussion. The
function Θ(f), defined as

Θ(f) =
1

2
[a+ eiξ − a− e−iξ] (9.38)

is thus the (complex) transfer function relating the RSD of DFC to the RSD
of special phase noise :

DFC(f) = Θ(f) × Φ(f) (9.39)
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• Φ(f) = 2k x(f) for a moving mirror. So that

DFC(f) = Θx→DFC(f)
4π

λ
x(f) (9.40)

where in Θx→DFC, the t
k
p coefficients have been calculated from opera-

tors all diagonal except the special one corresponding to the perturbed
mirror

• Φ(f) = k h(f)L for a GW event, so that

DFC(f) = Θh→DFC(f)
2πL

λ
h(f) (9.41)

where in Θh→DFC, the t
k
p coefficients have been calculated from opera-

tors all diagonal except the propagators P (2Lnorth) and P (2Lwest).

From Θ(f), one can extract the modulus and phase transfer functions, both
useful in servo loops studies.

9.5.2 The special case of quantum noise

Our discussion of the quantum noise calculation is based on the approach
by Niebauer et al. [31] about non stationary shot noise. Consider a time
interval ∆t, around time t, very short compared to the modulation period
1/fm. The number n(t) of photons reaching the photodiode during this time
is a random variable obeying a Poisson statistics, having an expectation
value E[n(t)] = n0(t), so that its variance is V [n(t)] = n0(t). The statistical
parameter n0(t) is related to the averaged power P0(t) during ∆t by (hP
denoting the Planck constant) :

n0(t) =
P0(t)∆t

hPνL

We can reverse as well the point of view and consider the detected power as
a random process, and we consider the associated centered process

δP (t) =
hPνL
∆t

(n(t)− n0(t))

Having the variance

V [δP (t)] =

(
hPνL
∆t

)2

n0(t) =
hPνL
∆t

P0(t)
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Assuming a quantum efficiency of 1, the detection current generated by the
diode is (for its centered part) :

I(t) =
e

hPνL
δP (t)

where e is the elementary charge. The process I(t) has a variance

V [I(t)] =
e2

hPνL∆t
P0(t)

D(t) being the demodulation current, the demodulated current J(t) is given
by

J(t) = D(t) I(t)

This defines a new centered process, of variance:

V [J(t)] = D(t)2V [I(t)] = D(t)2
e2

hPνL∆t
P0(t)

Moreover, we can consider the fluctuations δP as uncorrelated between any
two different time intervals, so that if t, t′ are the centers of two time slices,
we have

E[J(t)J(t′)] =
e2

hPνL∆t
D2(t)P0(t) δt,t′ (9.42)

where δt,t = 1, and δt,t′ 6=t = 0. The output current being periodic, it admits
an expansion in a Fourier series, and the coefficients are

J̃(ω) =
1

T
∫

T
J(t) eiωt

where T is any multiple of 1/fm and consequently much longer than ∆t. The
integral is thus fairly approximated by the discrete sum

J̃(ω) =
∆t

T
∑

t∈T
J(t) eiωt

and we get

E[J̃(ω) J̃(ω)∗] =
(
∆t

T
)2 ∑

t,t′∈T
E[J(t)J(t′)] ei(ωt−ω

′t′)
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thanks to eq.9.42, we find

E[J̃(ω) J̃(ω)∗] =
e2

hPνLT
∆t

T
∑

t∈T
D(t)2P0(t) e

i(ω−ω′)t =
e2

hPνLT
D̃2P0(ω−ω′)

In particular,

E[|J̃(ω)|2] =
e2

hPνLT
D̃2P0(0) (9.43)

This result is independent on ∆t that we can take arbitrarily small, therefore,
eq.(9.43) is exact. It follows that the spectral density of demodulated current
is

Q(ω) =
e2

hPνL
D̃2P0(0) (9.44)

The mean detected power being :

P0(t) = PL
∑

p,q∈Z
Jp Jq tp, tq e

−i(p−q)ωt

and the squared demodulation current

D(t)2 = sin(ωt+ ξ)2 =
1

4

(
2− e2iωt+2iξ − e−2iωt−2iξ

)

we get

D2P0(t) =
1

4


2

∑

p,q∈Z
JpJq tptq e

−i(p−q)ωt − e2iξ
∑

p,q∈Z
JpJq tptq e

−i(p−q−2)ωt −

e−2iξ
∑

p,q∈Z
JpJq tptq e

−i(p−q+2)ωt




so that the Fourier coefficient of the zero frequency is

D̃2P0(0) =
1

4


2
∑

p∈Z
J2
p tptp − e−2iξ

∑

p∈Z
JpJp−2tptp−2 − e2iξ

∑

p∈Z
JpJp−2tp−2tp




once substituted in (9.44), the RSD of quantum noise current is determined.
Note that in the calculation of the DFC’s due to classical perturbations
(precedent subsection) a factor of eP0/hPνL was ignored, as a part of a
common arbitrary scale factor. It is necessary to remember it here : ignoring
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this factor is equivalent to take 1 as the amplitude of the demodulating
current, and divide all DFC’s by eP0/hPνL. If we keep this convention, we
must finally take for the spectral density of modulated quantum noise :

DFCqn(f) =

√
2hPνL
P0

Θqn→DFC

The factor of 2 is necessary for passing to a one sided spectral density. We
have otherwise :

Θqn→DFC =
1

4

[
2a− b e−2iξ − b e2iξ

]

a =
∑

p∈Z
J2
p tptp

b =
∑

p∈Z
JpJp−2tptp−2

9.5.3 Transfer functions to an equivalent h(f)

An essential point is to compare the various perturbations acting on the
interferometer to the expected gravitational signals. One way for doing it
is to express these perturbations in terms of an equivalent spectral density
h(f) of gravitational amplitude. This is often implicitly done in papers. The
method we propose is to identify the DFC produced by a GW to the DFC
produced by any perturbation X of RSD X(f) :

DFCh(f) = DFCX(f)

or, introducing the transfer functions

Θh→DFC h(f) = ΘX→DFC X(f)

This allows to express the hX(f) equivalent to X(f) as

hX(f) = ΘX→h X(f)

and define a new class of transfer functions :

ΘX→h =
ΘX→DFC

Θh→DFC
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Figure 9.3: Transfer functions from δx(f) to DFC(f) for 4 types of mirrors,
5% finesse asymmetry

9.6 Interferometer noises

9.6.1 Proof masses position noise

A first possible use of our method could be to find the transfer functions
corresponding to motions of every mirror involved in a given instrument.
This could help in the commissionning phase, when we are free to test the
response of the interferometer to given, calibrated excitations. We show
below (Fig.9.3) the behavior of the transfer functions

relating the RSD of motion x(f) of each mirror of a perfectly tuned inter-
ferometer to the resulting DFC root spectral density. The transfer function
from the GW RSD to DFC is mostly identical to that of an end mirror, as
already seen, apart from an extra cause of cutoff, due to the sinc(2πfL/c)
factor, representing the averaging effect of propagation inside the cavity dur-
ing a time comparable to the GW period. This is why the transfer functions
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from the displacements RSD to an equivalent h(f) are not exactly constant
(see Fig.9.4). We see that the transfer functions for the cavity mirrors are
almost identical, the end mirror’s one being slightly larger. The splitter’s
and the recycler’s are much smaller (at least in the detection band). If fur-
thermore we assume the laser locked in frequency to the recycling cavity, the
laser frequency is correlated with the recycler’s motions (error signal is taken
a port 2). A simple approach assuming an infinite gain in the servo loop is
to adopt the transfer function

ΘδxR→h,1 =
ΘδxR→DFC,1 − ΘδxR→DFC,2

ΘδνL→DFC,2
ΘδνL→DFC,1

Θh→DFC,1

where the numerical indices refer to the corresponding port. The transfer
function ΘδνL→DFC,p expresses the relation between the laser frequency noise
and the DFC on port p, and will be expressed in detail in a coming section.
It follows that the recycler’s position noise is almost cancelled (see Fig.9.4),
at least in the detection band.

The irreducible part of the position noise is caused by small motions
of the mirrors, essentially driven by excitation of all degrees of freedom of
the various oscillators coupled to each. If we restrict ourselves to the main
features, we can take into account the motion of the suspension (the mirrors
are suspended like pendulums) and the motion of the reflecting face resulting
from excitation of the internal modes. For the pendulum thermal noise, we
adopt the following model ([32]) assuming that the dissipation occurs due to
a finite thermal conductivity in the wires :

x(f)2 =
2kBTΦω

2
w

mΩ

1

(Ω2 − ω2
p)

2 + Φ2ω4
w

with the following definitions : kB is the Boltzmann constant, T the tem-
perature, Ω = 2πf as usual. The loss angle Φ(f) is of the thermoelastic
form

Φ(f) = Φ0 +
∆Ωτ

1 + (Ωτ)2

with the Virgo parameters (case of an end mirror) (∆ = 3 10−3, τ = 2.34 10−4

s. The frequency corresponding to the elasticity of the steel wires (pendulum
frequency in zero gravity) is ωw = 2π × 0.017 Hz. The resultant pendulum
frequency is ω2

p =
g
L
+ ω2

w.
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where l is the pendulum length. Obviously, the parameters must be
slightly modified according to the type of the considered mirror. For the
internal thermal noise, we take a very simple model (see [33],[34]) valid for
the low frequency tail :

x2(f) =
4kBT

πf
UφM

Where U is proportional to the strain energy stored in the assumed cylindrical
substrate when a static pressure is applied having the same profile as the light
power flux (gaussian). It depends on the size of the blank and on the radius
of the light spot. This model does not take into account resonances, that are
likely at frequencies (several kHz) where only thin peaks will emerge from
the shot noise. For instance, for the Virgo end or corner mirror, we find
U = 7.32 10−11J.N−2. The loss angle φM can be as low as 10−6 for silica
mirrors. Suspension wires have also a special thermal noise spectrum (violin
modes), but essentially concentrated on thin resonance lines non essential for
data analysis since a number of papers [38] have been devoted to removal
from data of that kind of component. By taking for a given mirror the sum of
all these contributions, applying its transfer function, we get the equivalent
GW amplitude hi(f) (i enumerates the mirrors).

9.6.2 Quantum noise

The shot noise RSD is a constant, and therefore, the transfer function from
shot noise to an equivalent hQN(f) is the inverted transfer function from h(f)
to DFC (see Fig.9.5).

ΘQN→h =
ΘQN→DFC

Θh→DFC

then the h(f) equivalent to shot noise is

hQN(f) = ΘQN→h ×
√
2hPνL
P0

9.6.3 Sensitivity curve

Then the (incoherent) sum of all hi(f) thermal contributions gives a global
hTHN(f) equivalent to thermal noise. A new incoherent sum with the hQN
gives an estimate of the sensitivity of the interferometer (see Fig.9.6), to be
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Figure 9.5: h(f) equivalent to quantum noise

taken into account, for instance when evaluating the efficiency of matched
filters. This sensitivity curve is very well approximated by the fit function :

h(f) =


4.5 10−43

f
+

9 10−37

f 5
+ 3.24 10−46


1 +

(
f

500 Hz

)2





1/2

9.7 Upstream noises

Some noises are caused by perturbations acting before entrance of light in
the interferometer. We consider here the three main sources of upstream
noise, the laser itself and the modulator.

9.7.1 Laser frequency noise

The laser may be noisy in phase and in amplitude (in power). Let us consider
these two cases. The frequency noise will be described by a noisy optical
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phase φ(t) :
1

2π

∂φ

∂t
= νL + δν(t)

Where νL is the averaged frequency, and δν(t) a centered stationnary random
process of RSD δν(f). We shall as usual consider a special Fourier component
of the frequency noise and write

δν(t) = δν(f) cos(2πft)

so that the phase is

φ(t) = ωLt +
δν(f)

f
sin(Ωt)

We could have directly introduced a RSD of ”laser phase noise” φ(f), instead
of its equivalent δν(f)/f . After a first order expansion (in the frequency
region of interest, δν(f) is very small compared even to small values of f),
we get the laser output amplitude as the sum of a carrier plus two sidebands
:

A(t) = A0

[
e−iωLt +

δν(f)

2f
e−i(ωL+Ω)t − δν(f)

2f
e−i(ωL−Ω)t

]

After passing the phase modulator, the amplitude becomes

A′(t) = A0 e
−iωLt


∑

p∈Z
Jp e

−ipωt +
δν(f)

2f

∑

p∈Z
Jp e

−i(pω+Ω)t − δν(f)

2f

∑

p∈Z
Jp e

−i(pω−Ω)t




each of these partial waves is transmitted by the interferometer according
to their frequency. S being as above the A operator associated with the
comsidered port of the interferometer, the transfer coefficients are :

tp = S00(νL + p fm)
tp+ = S11(νL + p fm, f)
tp− = S22(νL + p fm, f)

(9.45)

The interferometer being static, the transmittance is the ordinary scalar
transmittance. The purpose of the tp± notation is to avoid confusion with the
t±p of the preceding section that have a different meaning. The t±p express the
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rate of creation of sidebands inside the interferometer, whereas the tp± ex-
press the transmission by the interferometer of sidebands already generated
The transmitted amplitude is now :

B(t) = A0 e
−iωLt


∑

p∈Z
Jp tp e

−ipωt +
δν(f)

2f

∑

p∈Z
Jp tp+ e−i(pω+Ω)t − δν(f)

2f

∑

p∈Z
Jp tp− e−i(pω−Ω)t




And the power reaching the photodiode :

P (t) = P0


 ∑

p,q∈Z
Jp Jq tp tq e

−i(p−q)ωt +
δν(f)

2f

∑

p,q∈Z
Jp Jq (tp+tq − tptq−)e

−i[(p−q)ω+Ω]t

− δν(f)

2f

∑

p,q∈Z
Jp Jq (tp−tq − tptq+)e

−i[(p−q)ω−Ω]t




Applying the demodulation/filtering scheme already detailed above, we ob-
tain the RSD of DFC as :

DFC(f) = Θδν→DFC(f)
δν(f)

f

where the complex transfer function is defined as in the precedent section
(Eq.9.38) by

Θδν→DFC(f) =
1

2
[a+e

iξ − a−e
−iξ]

where a± have the following definitions :

a+ =
∑∞
p=−∞ Jp Jp−1(tp+tp−1 − tptp−1−)

a− =
∑∞
p=−∞ Jp Jp−1(tptp−1+ − tp−tp−1)

(9.46)

Fig.9.7 shows the behavior of the transfer function in the case where some
asymmetry in the arms (different finesses) makes the interferometer sensitive
to frequency noise

9.7.2 Laser amplitude noise

Assume now fluctuations of the laser power, such that the averaged power is
P and the instantaneous power P (t) the sum of P plus a centered random
process of RSD δP (f) :

P (t) = P0 + δP (f) sin(2πft) (9.47)
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The modulus of the amplitude is thus

P (t)1/2 = A0

(
1 +

δP (f)

2P0
sin(Ωt)

)
(9.48)

So that the complex amplitude can be written as

A(t) = A0e
−iωLt

(
1 + i

δP (f)

4P0

e−iΩt − i
δP (f)

4P0

eiΩt
)

(9.49)

The quantity δP (f)/2P0 plays here the role of a phase RSD. Then, a treat-
ment similar to the preceding leads to the transfer function

DFC(f) = ΘδP→DFC(f)
δP (f)

2P0
(9.50)

with

ΘδP→DFC(f) =
1

2
[a+e

iξ − a−e
−iξ]

where the a± have the following definitions :

a+ =
∑∞
p=−∞ Jp Jp−1(tp+tp−1 + tptp−1−)

a− =
∑∞
p=−∞ Jp Jp−1(tp−tp−1 + tptp−1+)

(9.51)

The coefficients tp, tp± have the same definition as above (Eq.9.45). Fig.9.8
show the transfer function in the case where some detuning of the cavities
makes the interferometer is sensitive to laser power noise. It uses an exper-
imental spectral density of laser power noise measured on the Virgo laser,
that can be fit by the following expression :

δP

P
(f) =

3.1 10−6

f 1.5
+ 1.82 10−9 + 8.18 10−17 f 2

9.7.3 Modulator noise

If the oscillator driving the phase modulator presents some frequency noise,
some effects could be a priori expected on the interferometer noise. These
effects should however be small, if the demodulation current comes from the
same oscillator. Roughly speaking, what matters are the differences between
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the frequencies of the rf sidebands and that of the demodulator, and they are
constants unless some extra noise is fed into the demodulator. The modulator
has the transmittance

T (t) = e−iκ sinφ(t)

where the phase φ(t) obeys

1

2π

∂φ

∂t
= fm + δν(f) sin(2πft)

so that

φ(t) = ωt− δν(f)

f
cos Ωt

and (Jp ≡ Jp(κ))

T (t) = e−iκ sinωteiκ
δν(f)

f
cosωt cosΩt
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=
∑

p∈Z
Jpe

−i pωt +
iκφ(f)

2
cosΩt


∑

p∈Z
Jp e

−i (p+1)ωt +
∑

p∈Z
Jp e

−i (p−1)ωt




where φ(f) = δν(f)/f is the RSD of phase noise. Thanks to well known
properties of the Bessel functions, we can write as well :

T (t) =
∑

p∈Z
Jpe

−i pωt +
iφ(f)

2

∑

p∈Z
pJp e

−i (pω+Ω)t +
iφ(f)

2

∑

p∈Z
pJp e

−i (pω−Ω)t

The wave transmitted by the interferometer is thus

B(t) = A0


∑

p∈Z
tp Jp e

−i (ωL+pω)t +
iφ(f)

2

∑

p∈Z
p tp+ Jp e

−i (ωL+pω+Ω)t +
∑

p∈Z
p tp− Jp e

−i (ωL+pω−Ω)t




with the same definition as above (Eq.9.45) for the tp, tp±. The demodulation
current must contain the frequency noise :

D(t) = sin

(
ωt− δν(f)

f
cosΩt + ξ

)

After some straightforward algebra, we find for the RSD of DFC

DFC(f) = Θ(f) × δν(f)

f

with as customary

Θ(f) =
1

2
[a+eiξ − a−e−iξ]

and in this special case :

a+ =
∑
p∈Z JpJp−1 (ptp+tp−1 − (p− 1)tptp−1− − tptp−1)

a− = − ∑
p∈Z JpJp−1 (ptp−tp−1 − (p− 1)tptp−1+ − tptp−1)

(9.52)

The third term in each parenthesis represents the demodulator’s noise. The
essential feature is that independently taken, the modulator and the demod-
ulator noises have the same 1/f behavior at low frequencies, but in the above
formula, assuming a perfect coherence of phase between the modulating and
the demodulating currents, they almost exactly cancel each other at low
frequency. This is apparent on Fig.9.9. Anyway, even with large perturba-
tions, the noise level remains negligible, well below the sentitivity curve (see
Fig.9.10).

.
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