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1. The trail of volatile reservoirs from cores to disks

Molecular clouds: atomic-to-molecular
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1. The trail of volatile reservoirs from cores to disks

Prestellar phase: growing molecular diversity

• high density: handful of species remain, which are difficult to observe
(H2D+, D2H+, D+

3 ) because at high frequency (THz)

• Complete depletion ? Walmsley et al. (2004); Friesen et al. (2014)
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1. The trail of volatile reservoirs from cores to disks

Protostellar phase: volatile outburst

Organics delivered to early solar system ?
see lecture by D. Bockelée-Morvan
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1. The trail of volatile reservoirs from cores to disks

Spectral surveys: Orion KL with Herschel

Orion KL: massive star-forming region

Crockett et al. (2014)
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1. The trail of volatile reservoirs from cores to disks

Spectral surveys: TW Hya disk

Kastner et al. (2014) Punzi et al. (2015)

• Transition disk, ∼ 8 Myr

• Nearest (59.5±0.9 pc,
GAIA)

• Essentially: empty

• Wait for A. Dutrey’s lecture
to see (a little bit) more
species and to learn (a lot)
more on disks !
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1. The trail of volatile reservoirs from cores to disks

The overall picture

• Elemental abundances from stellar nucleosynthesis

• Gas-phase chemistry in molecular clouds (nH ≈ 1000 cm−3)

• During the next Myr, prestellar phase increases molecular diversity:
gas-phase & gas-grain processes

• Depletion of gas-phase species into ices: icy mantles become
important reservoirs of heavy elements

• Sublimation in the protostellar phase (hot corinos): T up to ≈ 100 K;
part (up to 20%) of the ice mantles returns to the gas-phase;

• photodissociation takes place in the cavity

• Chemistry is – likely only partially – reprocessed during the
protostellar phase

• Heavy depletion takes place in the cold/dense regions of
protoplanetary disks
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1. The trail of volatile reservoirs from cores to disks

Goals and strategy

What are the questions ?

• How can we track the volatile reservoirs if most (if not all) species
disappear from the gas phase ?

• Are cometary ices of interstellar origin ?

What are the goals ?

• Know the gas-phase reservoirs on an object-specific basis

• Identify if planetary systems inherited prestellar products

Strategy

• Rely on chemical models to infer the bulk from trace species

• Focus on small species (close to elements) and small networks
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1. The trail of volatile reservoirs from cores to disks

Yes we can

• Prestellar phase: see only the tip of the iceberg

• Rely on models to go from the infer the bulk

• Open astrochemical questions:
• Reservoir of nitrogen: N, N2, something else ?
• Reservoir of oxygen: water ice, other ?
• Reservoir of sulfur: unknown (sum of observable species . 1%

elemental sulfur

• Known issues in dense clouds
• nitrogen chemistry is not fully understood (HCN/HNC, isotopic ratios)
• oxygen is not fully understood (predicted O2 � observed)
• sulfur: the mystery

But still: we can tell something !
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1. The trail of volatile reservoirs from cores to disks

Chemistry: from cores to disks

• All the processes discussed in the context of astrochemistry apply to
protoplanetary disks

• The main features are:
• gas-phase processes
• surface processes (in water-dominated ices on dust)
• photo-dissociation regions (PDR) (outskirts of clouds, upper layers of

disks)
• grain size distribution (coagulation in cores, disks)

• Three-body collisions may become efficient in disk midplanes

• To be coupled with dynamical evolution (timescale competition)
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2. Disks irradiation
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2. Disks irradiation

Upper layers of disks

Disks are flared
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2. Disks irradiation

Upper layers of disks

Disks are flared: direct + scattered light
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2. Disks irradiation

Photodissociation and photoionization

• PDR: photon-dominated region (or photo-dissociation regions)

• Word of caution: for historical reasons, PDRs refer to dense regions
(nH > 104 cm−3); current view is that PDRs are places where UV
photons drive the chemistry;

• XDR: X-ray from the central protostar are also important

• UV play a leading role: molecular clouds, upper layer of flared disks

• CN, HCN, HCO+: probes of the X-ray/UV relative importance
(Kastner et al. 2008)

• Important effects in PDR: self-shielding (H2, CO, N2), extinction by
the dust

• UV field is measured in units of the ISRF (Le Petit et al. 2006)
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2. Disks irradiation

Irradiation of disks

Cleeves et al. (2013)

Cosmic-rays dominate in the midplane regions
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2. Disks irradiation

UV photodissociation processes

• H2 and CO photodissociation

• saturation of absorption line

• self-shielding

• mutual shielding (line
coincidence)

• UV radiation field evolves when
moving inward (PDR models
compute this; tables are
available)
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2. Disks irradiation

Selective photodissociation

• Consider two isotopologues, e.g. CO and C18O

• Their abundance ratio is the elemental 16O/18O≈ 500

• Indirect photodissociation favours the more abundant: absorption line
of CO is 500 times more opaque than C18O

• Photodissociation of CO is 500 times less efficient than C18O

CO/C18O > 500

• also applies to N2 (Heays et al. 2014):

N2/N
15N > (N/15N)elemental

(keep this in mind)
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3. Surface reactions (2)
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3. Surface reactions (2)

Surface chemistry

• gas-grain processes: accretion, desorption

• chemistry in ices: current view=diffusion limited

• icy grain = third-body in the collision
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3. Surface reactions (2)

Ice formation

Whittet et al. (2013)

• H2O ice form at AV≈ 3 mag

• species adsorb into ices

• few 10 of monolayers
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3. Surface reactions (2)

Ice formation

Slide from Bergin

See lecture by E. Dartois (composition, observation, etc)
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3. Surface reactions (2)

Molecular freeze-out

• Depletion is systematic (Tafalla
et al. 2006)

• C-bearing species disappear
from core center

• N-bearing species seem to
remain at high densities
(Hily-Blant et al. 2008)

• Complete depletion hypothesis:
even light species may freeze
out (Walmsley et al. 2004;
Friesen et al. 2014)
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3. Surface reactions (2)

Chemistry on interstellar grain surface

Usual view: diffusion limited process. Work in progress (you !)

• khop = ν0 exp(−ηEb/kTd)

• ν0: vibrational freq. of adsorbed species on grain; varies with mass

• η ≈ 0.3− 0.7

• Eb: binding energy (or energy barrier to overcome for hopping to
proceed)

• quantum tunneling: decreases with mass of the particle

• Warning: several caveats

• Surface inhomogeneity (Eb and η both likely to vary spatially)

• Competition between diffusion and reaction unclear
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3. Surface reactions (2)

Molecular freeze-out

Depletion is a competition between accretion and evaporation

• Accretion: kacc = ndσdvthS(T ,Td) ≈ 10−17(T/10)0.5nH s−1

• sticking coefficient S ≈ 1 (0.8 for H)

• depletion timescale: τacc ≈ 1010/nH yr

• evaporation timescale (see diffusion): τevap = ν−1
0 exp(Eb/kTd)

• freeze-out = accretion vs evaporation

• freeze-out: controlled by T , Td, nH

• Tgrain > Tfreezeout: little freeze-out

• Tgrain < Tfreezeout: massive freeze-out

• Tgrain ∼ 10 K in cores: freeze-out

• Same caveats as before
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3. Surface reactions (2)

Depletion in prestellar cores
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3. Surface reactions (2)

Ice chemistry: a minimalist astrochemical view

Primary reactions: hydrogenation of ice

• H + H −−→ H2

• O, O2, O3 + H → H2O

• N → NH3

• CO → CH3OH (methanol)

• C → CH4

• and also reactions with other atoms: CO + O −−→ CO2

Other

• external source of energy: UV-induced reactions, cosmic rays (see E.
Dartois)

• isotopic exchanges
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3. Surface reactions (2)

Networks

Linnartz et al. (2015)
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Networks

Linnartz et al. (2015)
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3. Surface reactions (2)

Snow lines

Qi et al. (2013)

• snow line: transition between freeze-out and desorption
• driven by the density and temperature radial and vertical profiles
• radial and vertical snow lines
• species disappear/appear at snow lines
• the CO snow-line: CO is destroyed by CO + N2H+ −−→ N2 + HCO+;

spatial anti-correlation between CO and N2H+

• Lecture by A. Dutrey
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3. Surface reactions (2)

Chemistry in disks

• observations do not sample the disk midplane (yet ?)

• chemistry in disks is very active

• radial/vertical mixing is probably important

• dust settling and growth is essential (dust surface !): time-dependent
chemistry and photodissociation

• feedback of chemistry on the turbulence (through ionization)

• chemical timescales can be short: big issue

• A very competitive and very active field of research

• A. Dutrey lecture
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4. Astrochemical models
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4. Astrochemical models

Overview

The engine

• The network: typically 100-500 species and tenfold gas-phase
reactions

• Philosophy: Small networks vs big networks

• Choice: w/ or w/o ice chemistry

• Important: secondary photons, grain charge

A model

• Boundary conditions (elemental abundances)

• Models: time-dependent (needs initial partitionning) / steady-state

• Physical conditions (0D to 3D); with feedback or not

• Solve a closed system of 1st order ODE (with time or zero-finding)
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4. Astrochemical models

Timescales
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4. Astrochemical models

Timescales
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4. Astrochemical models

Models vs observations

Models in practice

• Public databases (KIDA, UMIST) and codes (astrochem, nahoon)

• Boundary conditions

Comparison with observations

• strategy: focus on species or overall agreement (different approach)

• comparison in terms of abundances (abundance ratios more robust)

• or in terms of spectra (line radiative transfer: means problems)

• minimization: figure of merit ? (χ2 generally not a good one...)

• overall, this is a problem → opportunities
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5. The interstellar heritage of planetary systems
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5. The interstellar heritage of planetary systems

Isotopic ratios

• How can we identify interstellar records in early solar system objects ?

• Are cometary ices (at least partially) of interstellar origin ?

• Strategy: match species at different phases / risky

• Another strategy: isotopic ratios / more robust

• See lecture by C. Burkhardt
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5. The interstellar heritage of planetary systems

The origin of water on Earth and the D/H ratio in water

• Molecular clouds form water

• Water ice during the cold prestellar phase (freeze-out + formation in
ices by hydrogenation of O and/or O2): H2O/H up to 5×10−5, ∼
bulk of volatile oxygen budget

• D/H in the PSN: 2.5×10−5

• D/H in Earth oceans: 1.6×10−4

• One explanation: record of prestellar stage. Why ?
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5. The interstellar heritage of planetary systems

Chemical mass fractionation

• H+
3 + HD −−→ H2D+ + H2 + 232 K

• Energy difference due to different mass: fundamental energy is
1/2~ω, where for a spring, ω =

√
k/µ

• Note: exothermicity indeed depends on ortho:para states of all species

• this is a thermoneutral reaction: need to consider the reverse reaction

• at steady-state
kf /kr = K (T ) = [H2D

+][H2]/[H+
3 ][HD] = exp(−232/T )

• T decreases → equilibrium shifts to the right, favouring the heaviest
species

• fractionation, i.e. deviation from the elemental isotopic ratio:

H2D
+/H+

3 > (D/H)elemental

• this fractionation is transfered by chemistry to water (with H2D+
replacing H+

3 in the gas-phase)
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5. The interstellar heritage of planetary systems

The origin of water on Earth and the D/H ratio in water

The Cleeves et al. (2014) scenario:

• o:p ratios make ∆E ≈ 124 K: fractionation requires T ≤ 50 K to be
efficient: could be midplane, or prestellar phase

• Assume (there are models for this) that cosmic-rays are strongly
repealed from disks by the heliosphere: CR flux is reduced by ≈ 100;

• then not enough H+
3 in the disk (ionization is too low): deuterium

fractionation is damped out, hence that of water: never reach the
50-fold enrichment of HDO/H2O in Earth oceans

• Question: are CR expelled from pp disks ?
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5. The interstellar heritage of planetary systems

The origin of nitrogen in the solar system

Cometary ratio: 140; elemental (Sun, Jupiter): 441, Earth 272
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5. The interstellar heritage of planetary systems

Origin of the cometary ratio

• comets did not sample the bulk ? spatial inhomogeneity in the PSN ?

• did not trap the bulk ?

• value on Earth ?

• what are the reservoirs of nitrogen in the PSN: N, N2, other ? what
are their isotopic ratios ?

• are the different isotopic ratios due to processes in the PSN ?
interstellar (like for water) ?
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5. The interstellar heritage of planetary systems

The origin of nitrogen in the solar system

(indirect measurement) HCN in disks ≈ 130; Guzman et al 2017
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5. The interstellar heritage of planetary systems

Origin of the cometary ratio

• matching isotopic ratio in disks and comets

• these authors argue towards local processes in the disks: selective
photodissociation; no inheritance from prestellar phase

• caveat: indirect measurement (usual method however)

• H13CN/HC15N x (N/15N) → HCN/HC15N
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5. The interstellar heritage of planetary systems

The CN/C15N ratio in TW Hya

Directly measure CN/C15N isotopic ratio
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5. The interstellar heritage of planetary systems

The CN/C15N ratio in TW Hya
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5. The interstellar heritage of planetary systems

The origin of nitrogen in the solar system

Direct measurement in CN in TW Hya 323± 30; Hily-Blant et al 2017
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5. The interstellar heritage of planetary systems

So what ?
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5. The interstellar heritage of planetary systems

The nitrogen isotopic ratio in a galactic context

Two reservoirs of nitrogen in disks

• ISM is chemically homogeneous within 1.5 kpc

• HCN/HC15N=140 in 5 disks and CN/C15N=330 (in one disk)

• Hence, at least one disk carries two isotopic reservoirs

The present-day isotopic ratio in the local ISM

• CN ratio is 330; in very good agreement with direct measurements in
local ISM dense cores

• proposal: this is the present-day isotopic ratio in the local ISM

• How to compare present-day isotopic ratios in the local ISM with the
441 ratio in the PSN at -4.6 Gyr at Sun’s (unknown) birthplace ?

• answer: ask galactic chemical evolution models
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5. The interstellar heritage of planetary systems

Galactic chemical evolution of nitrogen

Perfect agreement with outward migration scenario (Minchev et al. 2013)
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5. The interstellar heritage of planetary systems

Consequences

• GCE models: today’s elemental can not be as low as 140

⇒ HCN traces a fractionated (hence secondary) reservoir

• CN ring emission encompasses Kuiper-belt region: comets did sample
the elemental ratio

• evolution of the N/15N ratio in comets over last 4.6 Gyr not needed
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5. The interstellar heritage of planetary systems

New scenario

• new scenario: N2 is (and was) the main reservoir of nitrogen in disks
⇒ must have the elemental isotopic ratio, which was 441 in the PSN

• CN is simply a tracer of this reservoir (consistent with chemical
models)

• but N2 was not trapped into cometary ices (too volatile ???);
consistent with Hale-Bopp and ROSETTA results (very low N2/CO)

• instead, comets trapped a secondary, minor, reservoir (traced by
HCN)

• N2 would have been captured by the Sun and Jupiter (fast ???)

• Earth: mixing of these two volatile nitrogen reservoirs (441 and 140) ?
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5. The interstellar heritage of planetary systems

Nitrogen origin: open questions

• selective photodissociation: radial variation of the isotopic ratio ?

• more CN observations

• origin of the fractionated reservoir: direct measurement of N-isotopic
ratio in prestellar cores needed (indeed, done...)

• what could prevent comets from trapping N2 ?
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5. The interstellar heritage of planetary systems

Summary for lecture 2

• prestellar phase builds molecular diversity and rich ices

• protostellar phase liberates ≈ 20% of the products into the warm
cavity: this is still debated

• if not all the ices are processed, interstellar ices may be partially
preserved

• Are acometary ices of interstellar origin ? (the O2 abundance in
67P/G-C: D. Bocklée-Morvan lecture)

• isotopic ratios can be used to establish the link between different
evolutionary stages

• this however requires fractionation processes to be known (perhaps
not entirely the case for nitrogen)
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5. The interstellar heritage of planetary systems

Concluding remarks

• The interstellar-to-primitive solar system chemical heritage is an
extremely active field of research

• Surface chemistry: from laboratory experiments to the astrophysical
context

• Comparisons between astrochemical models and observations

• Towards accurate astrochemistry: improved networks (nuclear spin
chemistry, isotopic fractionation)

• The initial and boundary conditions: towards astrochemistry clocks

• Overall volatile reservoirs of C, N, O, S, P, from cores to disks:
towards the origin of life in planetary systems
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Thank you !
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6. The interstellar heritage of planetary systems
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