

Chronology of the accretion of planetesimals: from the first condensates to the first rocks

Marc Chaussidon, CRPG-CNRS, Vandoeuvre-lès-Nancy Temperatures > 1500 C are reached in the inner zone of the disk during dissipation of heat generated by the accretion (cf talk by Cornelis Dullemond)

• Condensation of solids from the gas takes place over a range of temperature producing liquids and solids with a large range of composition (cf talk by Joe Nuth)

 Recent developments with models of the accretion of planetesimals show that there can be two ways to make 500-1000 km objects, either rapid (a few 0.1 Myr) or slow (a few Myr) (cf talk by Anders Johansen)

<u>Goal of the talk:</u> summarize constraints on the timing and chronology of these processes from dating of meteorites and their components (major changes since the first school *Les Houches 2001*) Primitive meteorites (cf talk by Guy Libourel)

- = chondrules (Mg-Fe-rich of types I & II, Al-rich)
- + CAIs (Ca-, Al-rich inclusions)
- + matrix

Important questions, not only for the origin of CAIs and chondrules but also for the origin of planets and the modelling of their bulk composition

• Processes taking place in the disk during the first few Myrs (or even less ?)

 Chondrites are considered as the "building blocks" of planets, but are they really the building blocks ?

(chondrites accreted late (?), after the formation of Mars)

• What was the composition of the "protoplanets" ? Did they survive ? Were their fragments part of the "building blocks" of chondrites and planets ?

1) Isotopic dating and its limitation

- 2) ²⁶Al-²⁶Mg: chronology of formation and evolution of CAIs and chondrules in the disk (caveats, age of chondrites, fragments of protoplanets, ...)
- 3) U-Pb: the absolute age of CAIs and chondrules (consistency or not with ²⁶Al)
- 4) ¹⁸²Hf-¹⁸²W: age of iron meteorites and Mars (last developments since the talk by Bernard Bourdon at les Houches 2009)

• radioactive decay:

$$\frac{d\binom{87}{Rb}}{dt} = -\lambda x^{87}Rb$$

$$\frac{87}{Rb \rightarrow 87} Sr (T_{1/2} = 48.8 \times 10^9 y)$$

$$\binom{87}{Rb \rightarrow 87} Sr (T_{1/2} = 48.8 \times 10^9 y)$$

$$\binom{87}{Rb \rightarrow 87} Sr (T_{1/2} = 48.8 \times 10^9 y)$$
• mass balance:

$$\binom{87}{Rb}_0 - \binom{87}{Rb} = \binom{87}{Sr}_0 - \binom{87}{Rb} = \binom{87}{Sr}_0 - \binom{87}{86} Sr \\ 0$$

$$\binom{87}{86} Sr}{sr} = \binom{87}{86} Sr \\ 0$$

$$\binom{87}{86} Sr}{sr}_0 + \binom{87}{86} Sr \\ 0$$

$$\binom{87}{86} Sr \\ 0$$

Papanastassiou & Wasserburg (1969)

$$({}^{87}\text{Sr}/{}^{86}\text{Sr})_{\text{Allende}} - ({}^{87}\text{Sr}/{}^{86}\text{Sr})_{\text{BABI}} = ({}^{87}\text{Rb}/{}^{86}\text{Sr})_{\text{solar nebula}} \times (e^{\lambda t} - 1)$$

Rb/Sr fractionation due to their different volatilities (evaporation/condensation) and different mineral/liquid partioning (cristallisation/melting)

Accretion is a low temperature process which does not produce any fractionation

Age of their youngest component < Age of chondrites < Age of metamorphism

 $\begin{array}{ll} ^{26}\text{Mg excess}: & \beta_{\text{equilibrium}} = 0.521 \\ \Delta^{26}\text{Mg} \approx \delta^{26}\text{Mg} - \delta^{26}\text{Mg} \ / \ \beta & \beta_{\text{kinetic}} = 0.511 - 0.514 \end{array}$

The ²⁶Mg excesses are due to the in situ decay of short lived ²⁶Al (because they are linearly correlated with ²⁷Al/²⁴Mg and not 1/²⁴Mg)

Bulk and mineral ²⁶Al isochrons record (and thus give access to) different processes

• Al/Mg fractionation for mineral isochrons:

crystal/liquid partitioning during magmatic history of CAIs or chondrules

Bulk and mineral ²⁶Al isochrons record (and thus give access to) different processes

- Al/Mg fractionation for mineral isochrons:
 - crystal/liquid partitioning during magmatic history of CAIs or chondrules
- Al/Mg fractionation for bulk isochrons: precursors composition, condensation & evaporation of CAI or chondrule melts

1) Isotopic dating and its limitation

2) ²⁶Al-²⁶Mg: chronology of formation and evolution of CAIs and chondrules in the disk (caveats, age of chondrites, fragments of protoplanets, ...)

3) U-Pb: the absolute age of CAIs and chondrules (consistency or not with ²⁶Al)

4) ¹⁸²Hf-¹⁸²W: age of iron meteorites and Mars (last developments since the talk by Bernard Bourdon at les Houches 2009)

Major questions with ²⁶Al (see Dauphas & Chaussidon, Ann. Rev. Earth Planet Sci. 2011)

What is the origin of ²⁶Al in the early solar system ?
 (irradiation, dying massive star, not addressed here, see last scenario by Gounelle & Meynet, 2012 and refs therein)

• What is the distribution of ²⁶Al (and of ²⁶Mg) in the disk ? Is ²⁶Al a chronometer ?

- Level of homogeneity of Mg and Al isotopes and timing of their mixing

 \cdot Is there a common $\delta^{26}Mg^{*}{}_{0}$ and $^{26}Al/^{27}Al_{0}$ for all CAIs, for all chondrules, for CAIs and chondrules ...?

- Timing of formation of CAIs and chondrules (condensation, melting) and "survival" in the disk

•What are the $\Delta t = (t_{initial} - t_0)$ for CAIs and chondrules ? • Are the $\Delta t = (t_{initial} - t_0)$ calculated for CAIs and chondrules from their $\delta^{26}Mg_i^*$, their ${}^{26}Al/{}^{27}Al_i$ (and their ${}^{207}Pb^*/{}^{206}Pb^*$) the same ?

Advances made in the last few years from developments of high-precision Mg isotopes analysis by MC-ICPMS & MC-SIMS

Bulk CAIs from CV chondrites define a very tight bulk ²⁶Al isochron (Thrane et al. 2006 ; Jacobsen et al. 2008, Larsen et al. 2011)

 $\pm 0.05 \times 10^{-5} \iff \pm 10,000$ years

<u>Questions</u>: only one event which lasted 10 000 years, or many events within 10 000 years or formation of CAIs over a much longer period but bias from sample selection ?

Some CAIs crystallized nearly at the same time and did not undergo any later perturbation

Distribution of initial ²⁶Al/²⁷Al in CAIs from "old, low precision" measurements

(review by MacPherson et al., 1995)

On way to make progress is to compare the $\delta^{26}Mg^*_{initial}$ of different objects with the predictions made from the ${}^{26}Al/{}^{27}Al_{initial}$ in case of closed (or open) system evolution of Mg isotopes from a reservoir with a given $\delta^{26}Mg^*_0$ and ${}^{26}Al/{}^{27}Al_0$. (Villeneuve et al., 2009 ; Larsen et al., 2011 ; MacPherson et al., 2012)

Villeneuve, Chaussidon & Libourel, 2009

The $\delta^{26}Mg^*_{initial}$ and ${}^{26}Al/{}^{27}Al_{initial}$ of Semarkona Fe-Mg chondrules are consistent with derivation from $\delta^{26}Mg^*_0$ and ${}^{26}Al/{}^{27}Al_0$ established at the time of formation of CAIs,

BUT because Fe-Mg chondrules have ²⁷Al/²⁴Mg ratios similar to solar, two scenario:

(i) condensation of precursors at t_0 & melting at $t_{initial}$

(ii) nebula gas from t_0 to $t_{initial}$ & condensation of precursors-melting at $t_{initial}$

Villeneuve et al., 2009

Very high precision Mg isotope work (ppm level, μ^{26} Mg instead of δ^{26} Mg) questions the homogeneity of 26 Al and/or Mg isotopes at the time of formation of CAIs

Calculated from CAIs and AOAs (Ameboid Olivine Aggregate) only, assuming that they have exactly the same condensation age and that they originate from the same reservoir The Larsen et al. data could also be reconciled with previous data in a scenario where ²⁶Al and Mg isotopes are homogenised at ±10% relative $(\mu^{26}Mg_{initial} = 40\pm4 \text{ ppm})$ at the time of type B CAIs from Allende.

In this scenario, formation of AOAs could have taken place later than that of CAIs ($\approx 35\ 000\ years\ later$) from a reservoir (refractory in composition) with a $^{27}Al/^{24}Mg \approx 2$. (argument against that : the AOAs are condensate with the same low $\Delta^{17}O$ than the CAIs and they mantle the CAI)

Mishra & Chaussidon (submitted)

All the objects studied have radiogenic ²⁶Al in-growth trajectories which intersect to restricted field

Mishra & Chaussidon (submitted)

Mishra & Chaussidon (submitted)

Whatever their re-melting age (slope of the mineral isochron) all the objects have reconstructed bulk compositions which fall within errors on the bulk CAI's isochron

Mishra & Chaussidon (submitted)

Because ferro-magnesian chondrules and refractory objects have very different ²⁷Al/²⁴Mg ratios, the composition calculated for their precursors have a well defined intersection

Last melting/crystallization of chondrules occurred ≈2-4 Myr after CAIs

But some chondrules are also much older

Villeneuve, Chaussidon & Libourel, 2009

Bulk δ^{26} Mg* of chondrules show that in some cases chondrule precursors may have condensed very early, i. e. contemporaneously to CAIs.

Dauphas & Chaussidon, 2011

Rapid mixing of supernova products injected in the Solar system (Boss, 2007)

A few ultra-refractory CAIs have no detectable ²⁶Mg* (Fahey et al., 1987 ; Ireland, 1990 ;Weber et al., 1995 ; Sahijpal et al., 2000) :

Formation prior to the introduction of ${}^{26}AI$?

Hibonite-rich CAI named HAL (Allen et al., 1980)

PLAty-hibonite Crystal (PLAC)

Liu, Chaussidon, Gopel & Lee (2012)

²⁶Al/²⁷Al ratios inferred at the time of condensation of hibonites

Liu, Chaussidon, Gopel & Lee (2012)

1) Isotopic dating and its limitation

 2) ²⁶Al-²⁶Mg: chronology of formation and evolution of CAIs and chondrules in the disk (caveats, age of chondrites, fragments of protoplanets, ...)

3) U-Pb: the absolute age of CAIs and chondrules (consistency or not with ²⁶Al)

 4) ¹⁸²Hf-¹⁸²W: age of iron meteorites and Mars (last developments since the talk by Bernard Bourdon at les Houches 2009)

Pb-Pb dating

Variations of the ²³⁸U/²³⁵U have been found in CAIs (Brennecka et al., 2010)

Interpreted as due to the decay of ²⁴⁷Cm (with ²⁴⁷Cm/²³⁵U= 1-2x10⁻⁴) 247 Cm \rightarrow^{235} U (T_{1/2} = 15.6 My)

Alternatively (Connelly et al., 2013), mass fractionation of U isotopes

These variations induce "errors" in the Pb-Pb age of up to 5 Myr (if the value of 137.88 is taken)

Connelly et al., 2013

Conclusions of the Pb-Pb ages:

 age of CAI forming event 4567.30 ± 0.16 Myr from Pb-Pb But this can date the last high temperature equilibration ? (The primordial Pb of the CAIs, is not the "most" primordial ? or some level of heterogeneities for Pb isotopes ?)

brief event <160 000 years
in agreement with ²⁶Al systematics, but how many events ???
Is this the same number than the 0.2-0.3 Myrs high-T period seen
from ²⁶Al for CAIs (much more statistics with ²⁶Al)
(and also between CAIs and AOAs ?)

 some chondrules formed at the same time than CAIs, but why did the CAIs escaped the chondrule forming event ? and why Pb-Pb is not "seeing" the protracted high-T history of CAIs

1) Isotopic dating and its limitation

- 2) ²⁶Al-²⁶Mg: chronology of formation and evolution of CAIs and chondrules in the disk (caveats, age of chondrites, fragments of protoplanets, ...)
- 3) U-Pb: the absolute age of CAIs and chondrules (consistency or not with ²⁶Al)
- 4) ¹⁸²Hf-¹⁸²W: age of iron meteorites and Mars (last developments since the talk by Bernard Bourdon at les Houches 2009)

$$^{182}\text{Hf} \rightarrow ^{182}\text{W} (T_{1/2} = 8.9 \text{ My})$$

$$\epsilon W = \epsilon^{182} W = \left(\frac{\frac{182}{182} W}{\frac{182}{182} W} - 1\right) \times 10000$$

Hf lithophile & W sidérophile

182 Hf- 182 W (T_{1/2}=8.9 Myr) story since *Les Houches 2001*

- $\epsilon^{182}W_{chondrites}$ is -1.9±0.1 (not like the Earth) (e.g. Kleine et al., 2002, 2005 ; Yin et al., 2002, ...)
- "Finally" the Earth accreted rather late 50-150 Myr, with the Moon forming event at >60 Myr (cf talk by Bernard Bourdon in *Les Houches* 2009)
- Metal-silicate differentiation in the parent bodies of several magmatic iron meteorites occurred within ≈ 0.5-1 Myr of CAIs (after correction for ¹⁸²W burnout by low energy thermal neutrons from GCR) (Kruijer et al., 2013)
- Mars is a stranded planetary embryo: half of its present size in ≈2 Myr (Dauphas & Pourmand, 2011)

Pt isotopes are a better neutron capture monitor (same depth and energy than for W)

Kruijer et al., 2013

Kruijer et al., 2013

40

30

0.8

1.0

Now parent bodies of magmatic iron meteorite do not form before CAIs

Kruijer et al., 2013

Mars is a stranded planetary embryo: half of its present size in ≈2 Myr (Dauphas & Pourmand, 2011)

