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1 Introduction
Planets are by-products of star formation. When a star forms from a rotating molecular cloud
core, the angular momentum conservation law forces this collapsing cloud matter to form a
rotating accretion disk around the newly forming star. As a result of “turbulent viscosity” much
of this matter is spiralling inward and lands on the star. We therefore call this disk a protostellar
disk. After a few 105 years, however, most of the matter of the disk has ended up on the star.
The remaining disk is still an active accretion disk, but with a mass Mdisk ≪ M∗. Over the next
10 million years or so this disk will gradually empty itself onto the star. However, the fact that this
disk stays there for ∼ 107 years means that there is enough time for planets to form out of the
disk. This is why we call the disk, in this late stage, a protoplanetary disk.

The idea that the solar system was born out of a protoplanetary disk originates back to
Kant and Laplace, who realized that the fact that all planets in the solar system rotate around the
sun in the same plane and in the same direction must mean that they must all have a common
origin in an flattened rotating “Urnebel” or “solar nebula”. By looking at the mass distribution of
planets in the current solar system one can calculate the minimal amount of matter that must
have been present in this disk 4.56 billion years ago. This leads to the well-known “Minimum
Mass Solar Nebula” (MMSN) model (Weidenschilling 1977; Hayashi 1981; Thommes & Duncan
2006), which can be written as:

ΣMMSN
gas (r) = 1700

( r

1AU

)−3/2
g cm−2 (1)

ΣMMSN
dust (r) = 7

( r

1AU

)−3/2
g cm−2 (2)

ΣMMSN
ice (r) = 22

( r

1AU

)−3/2
g cm−2 for r > 2.7AU (3)

where the ice is assumed to be present only for r > 2.7AU (we will, however, look more closely
at this “snow line” later). A surface density Σ is defined as the vertical integral of the density:

Σ(r) ≡
∫ +∞

−∞

ρ(r, z)dz (4)

Since the mid-90s protoplanetary disks are routinely observed around young stars (T
Tauri stars and Herbig Ae/Be stars), so we know now much better what such disks look like. It
is found that protoplanetary disks are for most part relatively cool (T ∼ 10 · · · 103K), so that dust
can survive. Indeed, these disks are found to be very dust-rich, and their radiative properties
are dominated by the dust continuum opacity.

Unfortunately current observational facilities are not yet powerful enough to really observe
deep into these disks into the regions where planets actually form. This has two reasons:

1. The disks are optically thick at most wavelengths, meaning that we can usually only see
the surface layers. Only the outer disk regions (r & 40 AU) become optically thin, but only
at millimeter wavelengths (at optical and infrared wavelengths they remain optically thick).

2. Most young stars with disks are at distances of & 100 pc, meaning that it requires extreme
angular resolution to resolve the planet-forming regions.

This means that even today, with the many observations we have of protoplanetary disks, we
still do not really know with certainty what the structure of these disks is! In particular, we still
have no real answers to the following questions:

• Dust-to-gas ratio d/g: It is very hard to measure the amount of gas in disks, and we also
do not really know the opacities of the dust very well. This means that we have very little



knowledge of the dust-to-gas ratio (how much gram of dust is there in the disk for every
gram of gas). Modelers typically guess that d/g = 0.01, which is roughly the value that is
valid for the interstellar medium. But this is nothing more than an educated guess.

• Disk mass Mdisk: When astronomers talk about an observed disk mass, they mean “I
have measured the dust continuum emission at millimeter wavelengths, assumed that the
disk is optically thin, assumed that I known the opacity of the dust, and assumed that the
d/g = 0.01”. If anything, they have measured the dust mass of the disk. The conversion
into disk mass (i.e. gas mass, since gas dominates by assumption over the dust) is based
on this very shaky d/g = 0.01 assumption.

• Surface density profile Σ(r): Millimeter observations probe the outer disk regions (r & 40
AU). They say little about the planet-forming regions (r . 40 AU). The surface density of
matter in these inner regions is inferred by extrapolation, often simply assuming a powerlaw
Σ(r) ∝ r−3/2 or so. This powerlaw is, however, an assumption, not a fact.

• The midplane temperature T (r, z = 0): While infrared observations can tell us with rel-
atively high accuracy what the temperature of the disk is at the photosphere of the disk
(henceforth “disk surface”), it does not give any information about the temperature in the
disk midplane, where the planets form.

Since the structure of protoplanetary disks stands at the very basis of all planet formation
theories, these uncertainties pose a real problem. For now the best we can do is make plausible
theoretical models of these disks and make sure that their observable properties are at least
consistent with what we observe. In this lecture we will develop such a plausible model.

2 A steady-state viscous accretion disk model
Let us make a model of a protoplanetary disk as an axisymmetric geometrically thin accretion
disk. In this section we will not concern ourselves with the disk’s vertical structure yet (we will do
that later). Therefore we will describe the matter distribution with the surface density Σ(r) and
the temperature with the midplane temperature T (r).

If the gas in the disk is perfectly non-viscous, and rotates in a keplerian fashion around
the star, then each fluid element has a specific angular momentum l = ΩKr2, where ΩK is the
keplerian angular frequency:

ΩK =

√

GM∗

r3
(5)

where G is the gravitational constant and M∗ is the stellar mass. We thus have l ∝ √
r. If this

parcel wants to slowly spiral inward to the star (i.e. accretion), then it must evidently lower its
specific angular momentum l, because r decreases. Without any torque on this fluid element,
it will thus not accrete and instead rotate forever in a circular orbit around the star. Viscosity
can, however, lead to an outward redistribution of angular momentum: the inner disk transports
angular momentum to the outer disk, so that the inner disk moves inward, while the outer disk
moves outward.

It turns out that the molecular viscosity νmol in astrophysical accretion disks is extraordi-
narily low. So low, that the accretion would take billions of years or more. However, there are
a number of theoretical arguments to presume that these disks are turbulent, and that turbu-
lence can lead to an effective turbulent viscosity. We will not go into the details of this turbulent
viscosity, other than noting that if you ever hear the term “magnetorotational instability (MRI)”
or “baroclinic instability (BI)” or “dead zones”, then you are hearing astronomers talk about the
processes that produce turbulent viscosity in disks. Instead, we are going to use the standard



“α-viscosity prescription”:

ν = α
c2
s

ΩK
(6)

where

cs =

√

kT

µmp
(7)

is the isothermal sound speed, where k is the Boltzmann constant, mu is the mean molecular
weight (for our purposes µ = 2.3) and mp is the proton mass. The parameter α is a dimension-
less number that can be regarded as a turbulent strength parameter. For physical reasons it
must be α . 1 and it is typically assumed to be α ≃ 10−3 · · · 10−2. This assumption is based
on models of MRI (see above) and on observations of protoplanetary disks (Hartmann et al.
1998). However, in the end the value of α is again just an educated guess, and it is sometimes
scathingly called an “ignorance parameter”. The form of Eq. (6) may look completely arbitrary at
present, but there is some idea behind it, which has to do with the size and speed of turbulent
eddies. However, let’s postpone this analysis to Section A.

Now let us assume that we have a steady-state accretion disk. In that case it turns out
(without proof) that the inward velocity of the gas is:

vr = −3

2

ν

r
(8)

Let us put in some typical numbers: r = 1 AU, T = 300 K, M∗ = M⊙ and α = 0.01 we obtain
vr = −54 cm/s. As you can see, this is a fairly small velocity, considering that the azimuthal
velocity is the Kepler velocity, which is vK = ΩKr = 2.98 × 106 cm/s = 29.8 km/s. It is also much
smaller than the sound speed, which is cs = 1.04 × 105 cm/s.

With the radial inward velocity we can define the accretion rate Ṁ as:

Ṁ = −2πrΣvr (9)

For a non-steady-state disk this could be a function of r, but if we have a steady-state, then
Ṁ must be constant with r, because otherwise we would have a time-dependent pile-up or
depletion of mass somewhere (m mass conservation law). If, in fact, we insert again Eq. (8)
then we obtain the final expression for the accretion rate in steady-state disks:

Ṁ = −2πrΣvr ≡ 3πΣν = constant (10)

Let us put in the typical numbers again, and take Σ = 103 g/cm2. We then get Ṁ = 5.1 ×
1018 g/s = 8 × 10−8 M⊙/year, which is indeed a typical value for measured accretion rates of
protoplanetary disks.

Let us now assume that the surface density Σ(r) and the midplane temperature T (r) are
powerlaw functions of r:

Σ(r) ∝ rp and T (r) ∝ rq (11)

We then have

ν ∝ T

ΩK
∝ rq+3/2 (12)

This then implies
vr ∝ rq+1/2 (13)

Putting this into Eq. (10) gives
rp+q+3/2 ∝ constant (14)



and thus:
p + q = −3

2
(15)

Let us apply this to the MMSN, which has p = −3/2: it would imply q = 0, meaning that the
midplane temperature would be constant with radius! This clearly shows that the MMSN is not
consistent with standard viscous accretion disk theory. Either viscous accretion disk theory is
wrong (or incomplete), which is very well possible given the number of assumptions we made,
or the MMSN is incorrect.

In Section 5 we will see that a more realistic powerlaw dependence of the temperature
would be q = −1/2 or q = −3/4 or even steeper, leading to p = −1 or p = −3/4 or even
shallower.

One possible explanation for disks that do not obey p + q = −3/2 is that α may not be
constant throughout the disk. In particular the above mentioned “dead zones”, where α can drop
to very low values (α ∼ 10−6 or so), might explain some of this.

3 Vertical density structure of protoplanetary disks
Now that we have a bit a feeling for how the matter is distributed radially in the disk (Section 2),
let us now look at the vertical distribution of matter. Like with the radial structure, the vertical
density structure is related to the vertical temperature structure. So let us, for now, make the
simplification that the temperature T (r, z) is independent of z, i.e. that ∂T/∂z = 0, and thus that
∂c2

s/∂z = 0. We will see in Section 5 that this is not correct, but it is not so bad either, so for now
it will do.

To very good approximation the vertical hydrostatic balance equation in the disk is:

∂p

∂z
= −ρ

GM∗

r3
z ≡ −ρΩ2

Kz (16)

With p = ρc2
s and with ∂c2

s/∂z = 0 we can turn this into

1

ρ

∂ρ

∂z
= −Ω2

K

c2
s

z (17)

The solution to this differential equation is:

ρ(z) = ρ0 exp

(

− z2

2H2

)

(18)

where we defined the pressure scale height H as

H =
cs

ΩK
(19)

With the definition of the surface density Σ (Eq.4) we can write ρ0 in terms of Σ and Eq. (18) can
be written as

ρ(z) =
Σ

H
√

2π
exp

(

− z2

2H2

)

(20)

It should be kept in mind that H is a function of r. If we have the typical temperature
profile for an irradiated disks of T ∝ r−1/2 (see Section 5) then cs ∝ r−1/4 so that

H ∝ r−1/4+6/4 ∝ r5/4 (21)

In other words: the ratio H/r ∝ r1/4, i.e. it increases with r. The disk thus has a flaring geometric
shape, which is important for what we will discuss in Section 5.

Let us put in some typical numbers: r = 1 AU, T = 300 K, M∗ = M⊙ we find H/r = 0.035,
i.e. the disk is geometrically thin, as expected.



4 Heating and cooling processes in protoplanetary disks
The main missing ingredient in our model so far is any knowledge of the temperature structure.
To make a model of the thermal structure of the disk we must study the heating and cooling
processes in the disk.

4.1 Viscous heating due to the accretion process
We saw that accretion can only happen if we have viscosity. But we also know from experience
that viscosity (friction) leads to the production of heat. The heating per gram of gas is propor-
tional to the viscosity coefficient ν and the square of the shear. In an accretion disk this amounts
to q+ = ν(rdΩK/dr)2. The total heating per cm2 is then

Qaccr
+ = Σν

(

r
dΩK

dr

)2

=
9

4
ΣνΩ2

K (22)

If we insert Ṁ = 3πΣν then we get

Qaccr
+ =

3

4π
ṀΩ2

K (23)

This makes sense, since it shows that the release of heat is proportional to the amount of matter
that accretes. Note that with Ṁ constant, Qaccr

+ (r) goes as

Qaccr
+ (r) ∝ r−3/2 (24)

Suppose now that the viscous heating would be the only heating process in the disk.
Somehow the disk must get rid of this heat, otherwise it would become hotter and hotter and
eventually reaches the virial temperature and accretion would stop. To extremely good approxi-
mation one can say that the disk must radiate the entire Q+ away again. If we assume that the
disk’s two surfaces can radiate as Planck functions with temperature Teff then the cooling rate is

Q− = 2σSBT 4
eff (25)

with σSB the Stefan-Boltzmann constant. The factor of two is due to the two sides of the disk.
Equating Q− = Q+ then gives

Teff =

{

3

8πσSB
ṀΩ2

K

}1/4

(26)

We see that if accretion is the only heating process, then the effective temperature goes as

Teff ∝ Ṁ1/4 r−3/4 (27)

for a steady-state disk. This is a very robust result and depends much less on various uncertain
assumptions. It is simply a reflection of the fact that the gravitational energy that is set free due
to accretion must be radiated away. It should be kept in mind, though, that Eqs.(23, 26) require
an additional correction factor close to the inner edge of the disk. This is, however, rarely of
concern for those of us who are interested in protoplanetary disks.

4.2 Heating through irradiation by the star
The other main heating process in protoplanetary disks is irradiation. In the later stages of
protoplanetary disk evolution it is in fact the dominant heating process.

Protoplanetary disks are optically thick. That means that the radiation from the star will not
be able to pass through these disks. Instead, the radiation will be absorbed in the surface layers



of the disk. However, where this radiation is absorbed depends entirely on the geometric shape
of the disk. We can distinguish between two main shapes: flaring disks and self-shadowed disks.
The difference lies in the height above the midplane Hs where the disk becomes transparent, or
in other words, the height of the photosphere of the disk. Let us call Hs the surface height. We
distinguish:

d

dr

(

Hs(r)

r

)

> 1 → flaring (28)

d

dr

(

Hs(r)

r

)

< 1 → self − shadowed (29)

Some astrophysicists define the case d(Hs/r)/dr = 0 as “flat”, but I prefer to call that limiting
case “conical”, because to me flat means Hs ≃ 0.

The surface height Hs is related, but not identical to, the pressure scale height H. Typi-
cally we have Hs ≃ 2 · · · 4H, and this factor depends on Σ in a rather complicated way which we
shall not discuss here.

Self-shadowed disks are only irradiated at their inner edge. The rest of the disk will be
practically non-illumated. However, most protoplanetary disks have a flaring geometry, as is
already suggested by Eq. (21). So for these disks we can assume that the stellar light can
illuminate the surface of the disk, albeit under a very shallow grazing angle. Let us call this
angle ϕ and assume that ϕ ≪ 1. A typical value is ϕ ≃ 0.05.

The flux of stellar radiation at distance r from the star is

F∗(r) =
L∗

4πr2
(30)

where L∗ is the luminosity of the star. However, the irradiating flux is the projection of this flux
onto the surface of the disk, which is

Firr(r) = sin(ϕ)F∗(r) ≃ ϕ
L∗

4πr2
(31)

Since we have two sides of the disk we have an irradiation heating of the disk of

Qirr
+ = ϕ

L∗

2πr2
(32)

Now let us again assume that the disk’s effective temperature is exactly enough to ther-
mally radiate this heating away, so let us set Q− = Q+ with Q− given by Eq. (25). We then
obtain

Teff =

{

ϕ
L∗

4πσSBr2

}1/4

(33)

If we, for convenience, assume that ϕ(r)=constant, then we see that

Teff ∝ L
1/4
∗ r−1/2 (34)

4.3 Combining the two
The effective temperature due to irradiation drops of shallower than the effective temperature
due to accretion. A plot of this is shown in Fig. 1.

If we have both processes acting in concert, then we get

Q− = Qaccr
+ + Qirr

+ (35)



Figure 1. The effective temperature of the disk as a function of radius, for the case where only accre-
tional heating is taken into account (dotted lines) and for the case where only irradiational heating is taken
into account (dashed line). Four different accretion rates are shown. The solid line shows the combined
Teff from Eq. (36) for Ṁ = 10

−6M⊙/yr.

which means for the temperature:

Teff =

{

3

8πσSB
ṀΩ2

K + ϕ
L∗

4πσSBr2

}1/4

(36)

Since for accretion the Teff drops steeper than for irradiation, we see that Teff is dominated by
irradiation for large r, while Teff is dominated by accretion for small r. At which r the turn-over
point is depends primarily on L∗ and Ṁ .

5 Vertical thermal structure of protoplanetary disks
So far we have only looked at the effective temperature of the disk Teff . But this does not yet tell
the full story, neither for the temperature structure of the disk surface, nor for the interior. So let
us now revisit both the accretional heating and the irradiational heating, but this time in a vertical
model of the disk. We assume, for simplicity, that the vertical density structure is a Gaussian,
like in Section 3, even though we will now deviate from the vertically isothermal assumption.
We now need knowledge of the opacity of the dust+gas mixture. Dust opacities are much more
important for the thermal structure of the disk than gas opacities (except in the very, very upper
layers), so let us focus only on the dust opacities.

5.0.1 Dust opacities
The opacity of dust is strongly frequency dependent. It also depends on the composition. Finally,
it depends strongly on the grain size. All these effects are demonstrated in Fig. 2. As you can
see, now it becomes ugly. But note that the opacity at stellar wavelengths (optical) tends to
be higher than the opacity at infrared wavelengths (perhaps with the exception of the 10µm
wavelength region).

To simplify our modeling we define κ∗ to be the average opacity at stellar wavelength and
κd to be the average opacity at wavelengths of dust thermal emission.

Since we write the density of the disk usually as the gas density, while the opacities
are the dust opacities, we need to use the dust-to-gas ratio. Let us write this as η, and take
η = 0.01. The vertical optical depth of the disk, from the midplane up to infinity, at dust-emission-



Figure 2. Dust opacities. Left panel: The Ossenkopf & Henning opacities for interstellar medium porous
grains, with and without ice coating. Right panel: Olivine grains with 50% magnesium and 50% iron, for
different grain sizes.

wavelengths then becomes

τd =
1

2
Σηκd (37)

5.0.2 Vertical structure model with disk viscous accretion
Let us first consider the case when there is no irradiation, only viscous heating. At the pho-
tosphere of the disk we assume that the temperature is equal to the Teff derived for viscous
accretion in Section 4.1. But how does the temperature behave deep down (z < Hs)? For that
we need radiative diffusion theory, which states that the bolometric radiative flux F (z) is

F (z) = − 4π

3ρηκd

dJ(z)

dz
(38)

where J(z) is the bolometric mean intensity. Since we are deep in the optically thick regions of
the disk, we can assume radiative equilibrium and thus

J =
σSB

π
T 4 (39)

leading to

F (z) = − 4σSB

3ρηκd

dT 4(z)

dz
(40)

Now let us make the simplifying assumption that all the viscously produced heat is released at
z = 0, and that half of that is diffusing upward, half downward. We focus on the upward half. We
then have that F (z) =constant and equal to:

F =
1

2
Qaccr

+ (41)

Inserting this into Eq. (40) gives the following differential equation for T (z):

dT 4(z)

dz
= −3ρηκd

8σSB
Qaccr

+ (42)

This can be directly integrated from z = Hs, where we know that the temperature is Teff , down
to any z < Hs. In Figure 3 solutions are shown for a fixed Ṁ , but three values of α (leading to
three values of Σ).



Figure 3. The vertical temperature structure at 1 AU for a protoplanetary disk around a sunlike star for
Ṁ = 10

−8M⊙/yr, for κd = 1000 cm2/g, η = 0.01, for three different values of α, according to the simple
model of Section 5.0.2 where all viscous heat is injected at z = 0. You see that high α means (for given
Ṁ ) a low Σ, hence a low Hs and a low τ , and hence a lower midplane temperature, compared to the
cases for lower values of α. If we would have injected the viscous heat not at z = 0, but proportional to
ρ,t hen the dT/dz at z = 0 would be 0.

We can integrate this all the way from z = Hs down to z = 0 to obtain the midplane
temperature:

T 4
mid − T 4

eff =
3ηκd

8σSB
Qaccr

+

∫ Hs

0
ρ(z)dz (43)

If the photosphere is at Hs ≫ H, then most of the mass of the disk lies below the photosphere,
so that we can say that

∫ Hs

0
ρ(z)dz ≃

∫ +∞

0
ρ(z)dz =

1

2
Σ (44)

So then we get

T 4
mid − T 4

eff =
3Σηκd

16σSB
Qaccr

+

=
3τd

8σSB
Qaccr

+

(45)

Since according to Section 4.1 we can say that T 4
eff = Qaccr

+ /(2σSB), which, for τd ≫ 1, is
small compared to the right-hand-side of the above equation, we can write (for τd ≫ 1) that the
midplane temperature is

Tmid =

{

3τd

4

}1/4

Teff (46)

We see that the higher the optical depth is, the higher the midplane temperature for the same
accretion rate (i.e. for the same effective temperature for accretion).

5.0.3 Vertical structure model with disk irradiation
Now let us derive what happens when we have a flaring disk with ϕ = 0.05. At z ≫ Hs any
dust grain that happens to be there will see the full radiation of the star F∗ = L∗/(4πr2). If the
dust grain is very large and κd = κ∗, then we can compute the dust temperature using simple
geometric arguments. If a is the radius of the (spherical) dust grain, the grain receives πa2F∗



Figure 4. The vertical temperature structure at 1 AU for a protoplanetary disk around a sunlike star for
Σ = 626 g/cm2, for κ∗ = 1000 cm2/g, η = 0.01, according to the simple model of Section 5.0.2. The plot
is on the same scale as Fig. 3.

erg/s radiation from the star. If the dust grain has temperature Tthin, and it can cool by emitting
thermal radiation in all directions, it will emit 4πa2σSBT 4

thin erg/s. Equating the two:

πa2F∗ = 4πa2σSBT 4
thin (47)

leads to

Tthin =

{

F∗

4σSB

}1/4

(48)

which we call the optically thin dust temperature. If we insert L∗ we get

Tthin =

{

L∗

16πr2σSB

}1/4

(49)

We can generalize this to smaller grains with κd 6= κ∗ in the following way:

Tthin =

{

κ∗

κd

L∗

16πσSB

}1/4

(50)

This also goes as Tthin ∝ r−1/2, like the Teff for the irradiated disk. But we see that typically

Tthin > Teff (51)

This means that dust grains well above the disk are hotter than grains in the disk’s photosphere.
The surface layers of the disk in fact form a transition from warm dust to cooler dust. They form
a warm surface layer.

We can make a simple model for this warm surface layer by replacing F∗ by F∗ exp(−τ∗)
where

τ∗(z) =
1

ϕ

∫ infty

z
ρ(z)ηκ∗dz (52)

This means we replace Eq. (50) by

Tsurf(z) =

{

e−τ∗(z) κ∗

κd

L∗

16πσSB

}1/4

(53)



Figure 5. Vertical temperature structures where both viscous heating and irradiation are combined,
according to the simple model of Section 5.0.4.

This would go to Tsurf(z) ≃ 0 for z → 0 because exp(−τ∗) would become so small. But once
we drop below T irr

eff we can say that we assume that the temperature is given by T irr
eff . A smooth

transition between these two is given by e.g.:

Tirr(z) =
{

T 4
surf(z) + T 4

eff

}1/4
(54)

This solution is shown in Fig. 4.

5.0.4 Vertical structure model with both viscous heating and irradiation
If we combine the two processes, we can do the same trick as before: we add the temperatures
as T 4:

T (z) =
{

T 4
accr(z) + T 4

irr(z)
}1/4

(55)

The solutions are then shown in Fig. 5.
If we now use these results to plot the midplane temperature as a function of radius, then

we find solutions shown in Fig. 6.

6 Location of the snow line
Now we have all the tools necessary to make estimates of the location of the snow line (see
Davis 2005). In the early stages of the disk’s life time the Ṁ is still high, and according to Fig.
6 this means that the snow line must lie at very large radii. However, as Ṁ drops, the snow line
moves inward. To really calculate the snow line we have to also account for the gas pressure in
the disk. The higher the pressure, the higher the temperature at which ices can survive.

It is also important to realize that even if ice cannot exist at the midplane and in the very
surface, there might be an intermediate z where the ice can survice. This leads to a kind of
“cloud deck” in the disk, as shown in the models by Davis and by Min et al. In Fig. 7 I reproduce
one of the figures of Min et al.



Figure 6. The midplane temperature of the disk as a function of radius, according to the simple model
of Section 5.0.4.

Figure 7. Figures from Min, Dullemond, Kama & Dominik (2011), Icarus 212, 416. Shown in white is the
region where water ice can survive in a disk with irradiation and viscous heating by accretion. You see that
for Ṁ = 10

−6M⊙/yr a “cloud deck” is produced and the ice line lies very far out. For Ṁ = 10
−9M⊙/yr

no such “cloud deck” is seen and the ice line is very near the Earth-forming region.



A Revisiting the α-viscosity prescription
In Section 2 we introduced the α-viscosity prescription in a rather ad-hoc way. Here we redo
this a bit better. The main idea is that in a normal ideal gas viscosity is brought about by
molecules moving some mean free path λfree before they collide with another molecule and
exchange momentum with that molecule. This allows momentum to be transported over small,
but non-negligible, distances. The viscosity is then proportional to:

νmol = Aλfreevtherm (56)

where vtherm is the thermal velocity of the gas particles and A ≃ 1 is some dimensionless propor-
tionality constant. The dimensions work out: [ν] =cm2/s, while [λfree] =cm and [vtherm] =cm/s.

In a turbulent flow we can say that turbulent eddies also have a certain “mean free path”
L. This is the distance they travel before they dissipate. This is typically much larger than the
molecular mean free path, i.e. L ≫ λfree. The speed V at which the turbulent eddies move is,
however, typically a bit slower than that of the molecules, but not by much. With this picture in
mind we can say that the turbulence acts as a kind of large-scale “viscosity” with

νturb = LV (57)

Let us now say that
L = βH and V = γcs (58)

where H is the pressure scale height of the disk (H = cs/ΩK ). This gives

ν = βγHcs = βγ
c2
s

ΩK
(59)

For consistency reasons we must have β < 1 (it is hard to imagine a turbulent eddy larger than
the pressure scale height) and γ < 1 (it is hard to imagine a turbulent eddy that does supersonic).
Since it is evidently only important to know the product of β and γ, it is customary to write

ν = αHcs = α
c2
s

ΩK
(60)

instead.

B References
The theory given in this lecture is assembled from many building blocks from the literature,
among which are the following:

• Shakura & Sunyaev (1973) A&A 24, 337 on basic theory of viscous disk accretion and the
α-viscosity prescription

• Lynden-Bell & Pringle (1974) MNRAS 168, 603 on a simple self-similar accretion-spreading
model of disk evolution

• Chiang & Goldreich (1997) ApJ 490, 368 on a simple but powerful model for an irradiated
disk

• D’Alessio et al. (1998) ApJ 500, 411 on detailed 1+1D disk structure models

• Hartmann et al. (1998) ApJ 495, 385 on comparing evolving disk models to observations of
disks

• Davis (2005) ApJ 620, 994 on the location of the snow line, and how that location evolves
with time



• The book “Accretion power in astrophysics” by Frank, King & Raine.

Note that much of the theory is by now so standardized that it might well be that I have over-
looked/forgotten an important reference. Please let me know if I did.

Recommended further literature:

• Hueso & Guillot (2005) A&A 442, 703 on a model of star formation with disk formation and
spreading

Some examples of more recent models (highly biased list):

• Min et al. (2011) Icarus 212, 416 on 2-D/3-D radiative transfer modeling of protoplanetary
disks with accretion and irradiation, focusing on the location of the snow line.

• Siebenmorgen et al. (2012) A&A on shadows, gaps and ring-like structures in proto-planetary
disks

• Pinte et al. (2009) A&A 498, 967 on a benchmark model for continuum radiative transfer in
highly optically thick protoplanetary disks


