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The dynamic behavior of asteroids orbiting near the mean
motion cornmensurabilities 2/1 and 3/2 with Jupiter is strongly
affected by secular perturbations due to the outer planets, which
are not present in the usual models based on the restricted
three-body problem. Moreover, many interesting and puzzling
phenomena involve inclined asteroid orbits and cannot be studied
by planar models. Therefore, we have investigated the location
and the dynamic effects of the three main secular resonances
vs, ¥, and ryg, inside the mean motion commensurabilities.
This is done by means of a seminumerical method, which allows
us to obtain a 3-D picture of the dynamics, including the case
of asteroids at high inclinations. Our findings throw new light
on the existence of the Hecuba gap and the Hilda group in the
asteroid beit. In particular, we have found that: (i) The interac-
tion between the »; and the v, resonances gives rise to large
chaotic zones for eccentricities >0.25 and >0.45 in the 3/2 and
2/1 resonances, respectively, which may cause close encounters
with Jupiter and ejection from the solar system—however, the
Hilda asteroids avoid this chaotic zone due to a phase-related
protection mechanism. (ii} At large eccentricities the resonance
causing a libration of the argument of perihelion is also present
and can force strong secular changes of the eccentricity and
the inclination. (iii) Aithough the Hilda group is bounded below
the »,; resonance curve in the inclination vs. eccentricity plane,
such a boundary is not present in the 2/1 resonance, where
vy, affects zero-inclination orbits at eccentricities of about 0.2,
However, this resonance can substantially increase the inclination
but not the eccentricity and does not affect nearly circular orbits;
therefore its location is not sufficient to explain the formation
of the Hecuba gap. © 1993 Academic Press, Inc.
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1. INTRODUCTION

The motion of asteroids in mean motion commensura-
bilities with Jupiter has been studied many times, and
extensive references on this subject can be found in Yoshi-
kawa (1989) and in Henrard (1988). Here we aim to revisit
this problem under at least three new aspects: by using
a more realistic model which includes the perturbations
of the Jupiter—Saturn system, by extending our analysis
to the orbits with nonzero inclination, and by developing
a general theory which can be applied directly to any
mean motion resonance. This first paper is devoted to the
case of the 2/1 and 3/2 mean motion commensurabilities.

For what concerns the model, all theoretical work about
the dynamics in mean motion resonances has been carried
out up to now in the framework of the restricted three-
body problem. This is probably due to historical reasons,
since this was the model adopted first by Poincaré (1892).
Although this model is suitable for pointing out many
features of the resonant dynamics, it is not a realistic one
for describing the dynamics in the asteroid belt. Indeed,
Jupiter’s orbit is not a Keplerian one; it changes with
time, under the perturbation of the other planets, mainly
Saturn. This movement, although very slow, is not negligi-
ble, even from a qualitative point of view, since it intro-
duces new secular frequencies; by consequence, a new
class of resonances, called secular resonances, can occur,
changing completely the dynamic picture.

In particular, three secular resonances are very im-
portant: v, v¢, and v|;. The v; and the v, resonances are
given by the /I commensurabilities between the fre-
quency of the longitude of perihelion of the asteroid and
one of the two main characteristic frequencies of the mo-
tion of Jupiter’s longitude of perihelion, gs and g, respec-
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tively. The v, resonance is the corotation of the node of
the asteroid with that of Jupiter. In the restricted three-
body problem, the »; secular resonance is approximated
by the resonance that occurs when the frequency of the
asteroid’s periheiion is locked around zero. Notably, this
resonance is at the origin of the phenomena which are
claimed by Wisdom (1983, 1985) and Yoshikawa (1989,
1991) to explain the existence of gaps in the distribution
of the asteroids in correspondence with the 3/1, 4/1, and
5/2 mean motion commensurabilities. Conversely, the v,
and the v, secular resonances are completely absent in
the framework of the three-body problem.

It is well known now that, far from mean motion com-
mensurabilities, the structure of the asteroid belt is deter-
mined by the presence of secular resonances. These have
been extensively studied by Williams (1969), Williams and
Faulkner (1981), Nakai and Kinoshita (19853), Yoshikawa
(1987}, Morbidelli and Henrard (1991), KneZevié et al.
(1991), and all modern quantitative theories for the com-
putation of asteroid proper elements take into account the
slow secular changes in the orbit of Jupiter (see Lemaitre
1992). Therefore, with this work, we wish to update our
knowledge on mean motion commensurabilities by adopt-
ing the same model used for the computation of asteroid
proper elements; in particular we look for the existence
of secular resonances inside mean motion commensura-
bilities and study their dynamic effect. This will provide
some nice surprises.

The use of a more realistic model forces us to take into
account also the motion at nonzero inclination. In the
framework of the restricted three-body problem, the dy-
namics is symmetric with respect to the orbital plane of
the perturbing body; therefore if the asteroid’s orbit has
initially a zero inclination, it will never leave such a plane.
This is no longer true in the framework of the more realis-
tic model in which Jupiter’s inclination is nonzero and
its longitude of node is precessing: no constant value of
inclination is possible a priori.

Very few analytic works exist on the dynamics in mean
motion commensurabilities in three dimensions (i # 0).
Yoshikawa's work (1989, 1991), in principle, is not limited
to the case i = 0, but the problem is oversimplified by
averaging the equations of motion over the argument of
perihelion. Such a simplification cannot be supported by
any perturbation scheme, since a resonance in the motion
of the argument of perihelion occurs, as pointed out by
Morbidelli and Giorgilli {1990). This last work, however,
does not provide a global picture of the dynamics, but
only locates periodic orbits; moreover it is also carried
out in the framework of the restricted three-body
problem.

Inour study, we do not restrict ourselves to small values
of the eccentricity ¢ and the inclination i, This is mainly
due to the fact that the secular perturbations may force
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eccentricity and inclination to quite large values. There-
fore, instead of dealing with classical series expansions
in e and i, we will evaluate the Hamiltonian and its deriva-
tives in closed form, following Ferraz-Mello and Sato
{1989) and Morbidelli and Giorgilli (1990). We believe that
this approach obtains results consistent everywhere in
the space.

For what concerns the perturbation approach, we pay
lot of care in developing a theory suitable for exploring
any mean motion commensurability, avoiding all ad-hoc
simplifications and adaptations. This is achieved by intro-
ducing suitable action-angle variables in a seminumerical
way, following Henrard (1990), and implementing, when
necessary, the algorithm of successive elimination of the
harmonics (Morbidellt 1992). This fact is probably more
important from the mathematical point of view, rather
than for what concerns the physical results. However, a
unitary theory allows the similarities among mean motion
commensurabilities and the particularities of some of
them to be pointed out better. Therefore we hope that
this will allow a better comparative understanding of the
dynamics in the asteroid belt.

In this paper we concentrate our attention on the dy-
namics in the 2/1 and 3/2 mean motion commensurabili-
ties. These are in some sense the most mysterious ones.
Indeed all studies performed in the framework of the
three-body problem point out that the two resonances
have very similar dynamic behaviors. Despite that, the
3/2 resonance hosts a family of asteroids, called the
Hildas, whereas the 2/1 one is associated to a puzzling
gap (the Hecuba gap), where asteroids are absent {apart
from very few exceptions). A possible explanation of this
fact lies in the cosmogonic scenario by Henrard and
Lemaitre (1983b). Therefore, a challenge exists to explain
the Hecuba gap on the base of the resonant dynamics,
taking into account only gravitational forces.

We anticipate here our main results:

(1) The interaction between the v and the v, secular
resonances causes the existence of a very wide chaotic
zone at large eccentricity (¢ > 0.25) in the 3/2 and at very
large eccentricity (e > (0.45) in the 2/1. In the latter case
escape from the Solar System may occur. The Hilda aster-
oids seem to avoid such a chaotic zone, since they are
phase-protected.

(2) The resonance of the argument of perihelion, which
causes important excursions of the eccentricity and the
inclination, is also present at large eccentricity {¢ — 0.4
in the 3/2 and ¢ ~ 0.7 in the 2/1).

(3) The »,, secular resonance bounds the Hilda family
in the (e, i) plane in the 3/2 commensurability (see Fig.
14). Conversely, in the 2/1 mean motion commensurabil-
ity, it is present at moderate eccentricity: it cuts the
plane i = 0 at e ~ 0.2. Therefore, if the Hilda family
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were translated into the 2/1 commensurability (i.e.,
changing the semimajor axis, but not the eccentricity
and the inclination) it would be crossed by this secular
resonance, the effect of which is to considerably increase
the inclination.

However, we do not claim to have solved the problem of
the formation of the Kirkwood gaps in a noncosmogonic
way. Indeed, the »; resonance in the 2/ commensurabil-
ity seems to be isolated from the resonance of the argu-
ment of perihelion and from the other main secular reso-
nances; therefore the resonant motion looks regular and,
even if the inclination can increase to 30°, the eccentricity
does not show important changes. This has been con-
firmed by a numerical simulation over 1.5 Myr. Moreover,
if the initial eccentricity is smaller than 0.15 and the incli-
nation is low, fictitious asteroids may avoid the v, reso-
nance. On the other hand, it is difficult to believe that the
existence of this secular resonance, which is the only
important difference we have found between the 2/1 and
3/2 case, does not have a role in the existence of the
Hecuba gap. The fact that it bounds the asteroids’ distri-
bution in the Hilda family, suggests that this secular reso-
nance {5 dynamically important, even if we do not under-
stand well how. One could conjecture the existence of
slow Arnold diffusion at large inclination, whereto the
asteroids are pushed by the v resonance; such a diffusion
could be produced by the presence of secondary reso-
nances of higher order and could make the eccentricity
increase to large values so that the asteroid becomes a
planet crosser. Of course proving this conjecture goes
beyond our analytic possibilities. A specific numerical
research in this direction should be interesting; however,
the timescales being very long, this would not be an easy
job.

The paper is structured as follows. Section 2 is devoted
to the general settings and to the perturbation appreach
used in this work; it is the mathematical section of the
paper. Those who are interested only in the physical re-
sults on the dynamics in 2/1 and 3/2 resonances can skip
it and go directly to the specific Sections 3 and 4.

2. GENERAL SETTINGS AND PERTURBATION SCHEME

This section is devoted to the presentation of the
mathematical background of cur theory. As guiding line,
we follow the philosophy of the successive elimination
of perturbation harmonics (Morbidelli 1992), searching
and eliminating, one after the other, the most important
harmonics in the different regions of the phase space.
This leads us to determinc the geography of the main
resonances and to build up local adaptative (guasi-
integrable) models to describe the main features of the
dynamics.,

In what follows, we shall adopt the usual notations

MORBIDELLI AND MOONS

for the Keplerian elements of the asteroid (resp. Jupiter):
a (resp. a’) for the semimajor axis, ¢ {resp. ¢’} for the
eccentricity, / (resp. /') for the inclination, X (resp. A')
for the mean longitude, & (resp. @') for the longitude
of perihelion, and 1 (resp. Q) for the longitude of
node.

We start with the Hamiltonian of the restricted three-
body problem Sun-Jupiter-asteroid (see, for instance,
Szebehely 1967)

g _lTH ( L _rr
r—r #3)

where r is the heliocentric position vector of the asteroid,
r’ the one of Jupiter, p the mass of Jupiter, and L' the
conjugate momentum to the mean longitude of Jupiter.
The universal gravitational constant, the semimajor axis
of Jupiter, and the total mass of the Sun-Jupiter system
are chosen as units.

We immediately extend the problem in order to take
into account the secular variations of the orbital elements
of Jupiter due to the presence of the other planets {(mainly
Saturn):

e’ cosm = msscos(gst + A + mg,cos(gyt + AD)
e'sine’ = myssin(gst + A + msgsin(ger + AD
sini'/2cos ' = nscoslsgt + pud)
sini’/2sin ' = ngqsin (s + pd). W

The adopted values for the constants ms s, g5, AS, s,
86> Ny Mg, ¢, and ul are taken from the LONGSTOP
numerical integration of the outer Solar System (Nobili
et al., 1989) g = 4.2575"ly, g, = 28.2455"1y, 5, =
—26.3450"y, A? = 27.0°, A! = 124.2°, ud = 304.0°,
mss = 4419 X 1077, mge = —1.570 X 1077, ns, =
3.153 % 1079,

With the introduction of resonance variables appro-
priate to the (p + ¢)/p mean motion resonance and the
introduction of three new momenta conjugated to the
three new time dependances introduced by the Jupi-
ter—Saturn system, the seven-degree-of-freedom autono-
mous Hamitonian of the problem reads

ptag, l-p
p 2a

_ (_l__m)
® r—v )

the phase space being described by the variables

% = .l'\’ + ng_; + gﬁA‘f,) + SéAIﬁ -

(2)
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o=EXy By _4 S-L-G
q q
Uz=[)_‘t_qA’_EA_Q, SZ:G_‘H
q q
_V:E_Mh,fg , N;ML_H
q q P
+
A,, Al — p qL + Ll (3)
@5 = gst, Ag
wﬁ_gﬁrs A;'
Q = 81, A'!(],

where L = V(1 — pla, G = LV — ¢, and H = G cos
i are the usual Delaunay’s momenta.

Our aim is now to reduce the number of degrees of
freedom in order to be able to study the dynamics associ-
ated to such an Hamiltonian. The first step will consist
of the averaging of the Hamiltonian with respect to the
mean longitude of Jupiter in order to remove from the
problem all of the short periodic oscillations. This averag-
ing is done by a numerical process. Indeed, it is worth
noting here that, in the computation of the Hamillonian
(2), we do not perform the classical developments in
power serics of the eccentricity and the inclination of the
asteroid nor in Fourier series of the angular variables.
The value of the Hamiltontan (and of its derivatives when
needed) is computed for any given value of the phase
space variables using closed formulas which are nonsingu-
lar at low eccentricity and/or inclination and remain valid
at high values of both quantities (Ferraz-Mello and Sato
1989}. The motion of the asteroid is thus described very
precisely, without any restriction about the size of the
eccentricity or of the inclination. The dependence on Jupi-
ter, on the contrary, is truncated at the first order in
the eccentricity and inclination as the maximum value of
those quantities is always small. We know, however (see
Moons and Morbidelli 1992), that higher order ierms in
¢' are responsible for the existence of smali chaotic layers
at moderate eccentricity.

After the elimination of the short periodic terms, the
Hamiltonian is still a six-degree-of-freedom one. In any
case, there is a hierarchy among the degrees of freedom;
indeed, we can divide the Hamiltonian into a main part,
independent of ¢’ and i’, and a perturbation given by the
linear terms in ¢’ and {'. However, the main part is not
integrable since it depends on the two angles o and o-..
In a first step, we shall thus study the planar problem
(i = i’ = 0), the main part of which is integrable as it
depends on the angle o only. After that, we will extend
the theory to the three-dimensional case.
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2.1. The Planar Problem

The planar problem (i = i = () is a four-degree-of-
freedom problem independent of the variables o, , 5., (',
and Aj,. The Hamiltonian of this problem can be written

H = gshs + geg + Holo, S, Ny + ¥, 4

where Hy(a, §, N) is integrable and where the perturba-
tion #, contains all the terms proportional to e”:

¥, = ms ¥, (o, 5, v, N, ©5) )
+ s g3, o, S, N, dyg).

The integrable part ¥,(o, §, N) can be viewed as a one-
degree-of-freedom Hamiltonian in (o, §) depending on a
parameter N. The phase space of this Hamiltonian (see
Fig. 1) has been studied many times in the past for low
values of the eccentricity (see, for instance, Henrard and
Lemaitre 1983a, Lemaitre [984), Its shape at high eccen-
tricity is described in (Moons and Morbidelli 1992) and
is somewhat different: the size of the maximal excursion
in eccentricity along a librating trajectory is reduced and,
for the 2/1 and 3/2 resonances, a new stable family of
periodic orbits of the nonaveraged problem appears at
o= .

In any case, the dynamics associated with €, are far
from being trivial and, in order to simplify the expression
of ¥, while taking into account the full distortion of its
invariant tori, without any approximation, we shall intro-
duce suitable Arnold action-angle variables. These are
defined in order that the new actions J and J' are constants
of motion for ¥ (i.e., their values parametrize the invari-
ant tori which the phase space is foliated into) and the
new angles ¥ and ¢’ are linear functions of the time. The
transformation from (o, S, », N) to (4. J, ¥', J') is given
by {see Henrard, 1990)

2 L
=70 J—zﬂ_ﬂngcr ©
W' = v —p(hJ, 0, J =N,

where the integral is computed along a periodic orbit in
(o, §) of ¥, and where 7 is the time, T the period of the
orbit, and p a periodic function. We stress that such a
transformation is not an explicit one; on the other hand,
as shown in Henrard (1990), we are able to handle the
new variables by computing them numerically on each
desired torus. We do not insist on the technical details of
this procedure, since they have already been discussed
in many papers (see, for instance, Morbidelli and Henrard
1991, Moons and Henrard 1992, Lemaitre and Morbidelli
1992).
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With this choice of variables, %, is reduced to H(J,
J') and the unperturbed frequencies of the system are
given by

_ %,

T ar TJTG%U

M

On the other hand, with the introduction of the ac-
tion—angle variables (6) into the perturbation, the total
Hamiltonian (4) is transformed into

H o= gsAs + geg + H(J T + ms K, O, T, T, @3)
+ ms oI S, T T dg
(8)

Let us now consider the secular resonances introduced
by the perturbation; these are given by 1/1 commensura-
bilities between the mean frequency of the longitude of
perihelion of the asteroid and one of the frequencies g
and g, of Jupiter’s longitude of perihelion, i.e., they corre-
spond to w, + g; = 0 (for v;) and w, + g, = 0 (for v}
Indeed,

wy = (1) = (& + i) ={—a).
These secular resonances can be located in the plane

(a, e) by drawing the level curves of w, = —gs and w, =
— g, as functions of the initial conditions of integration
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0.5

Typical phase space of #;, here on the surfaces N = 0.82 (left) and N = 1.04 (right). The coordinates are k = ecos{(o)and I = ¢

{a, e, o = 0). The results are given in Fig. 3 for the 2/1
resonance and in Fig. 10 for the 3/2 one. We see that the
two secular resonances are relatively close to each other
but, up to now, we have no idea of their real extent.
Unfortunately, we are not able to take both of them to-
gether into account by an analytical theory. We shall
therefore, in a first approximation, consider each of them
separately, neglecting the first one when studying the sec-
ond one, even if we already know that this approach is
not realistic as soon as the two resonances overlap or are
very close to each other.

Let us neglect, for the moment, the contributions in
@ and consider only the harmonics in @;. We use the
canonical variables

W, J
Ps = + @5, S ' )
@, 5 = A5 - J',

and the resulting Hamiltonian,

W= gs(Fs + ') + (T, J'Y + ms sHy G, Jods, '),
(10)

is, in fact, a two-degree-of-freedom one as it is indepen-

dent of @:, the momentum I1: being thus a constant.
This Hamiltonian can be averaged with respect to the

angular variable i, which, in the region near the »s reso-
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nance, is a much faster variable than ;. This is done by
using the seminumerical first-order perturbation method
of Henrard (1990} and, in this way, we get an integrable
model for the »; secular resonance in the plane,

Ho=gd + H(J,T)+ e AT, T cospl), (11)

with

1
AT = ]—Pf: %, (1), S, (o) .
— wat, NU), & = 0) dt

and where ¢’ = m; and ¥ = (@} — @); the integral is
computed along the torus (J, J') of ¥, as in Eq. (6).

The action J = J + O(e’) being an integral of motion,
we can plot the level curves of 3{ on given surfaces J =
C'in order to see the dynamics in §if = @5 — @& + O(e').
We can also compute the separatrices of Eq. (I11) and
draw their traces in the plane (g, e, o = 0, y5 = $*) in
order to see the amplitude of the »; resonance, ¥* being
the value of ¢ corresponding to the stable equilibrium
point of Eq. (11).

Let us recall, however, that we have temporarily ne-
glected the harmonics in ;. Before going further, it is
necessary to take them into account. We shall thus do
for the v, exactly what we have done for the v, (this one
being in its turn neglected), the integral of motion J being
common to both problems.

The result is astonishing (see Figs. 3 and 10): the two
resonances are very broad, the region of overlapping be-
ing very wide. An analytical model neglecting their com-
bined effects is thus not realistic.

In order to describe the mutual effects of the »; and v,
resonances inside a mean motion resonance (p + g)/p in
the frame of the planar problem, we shall now integrate
numerically the averaged modei obtained by the juxtapo-
sition of the two independent analytical models con-
structed previously:

T o= (gs + g)d" + Ho( T, I} + ms sA(J, J) cos(i)

+ ms AT, T') cos(hl)-
(13)

To perform such an integration in a quick way, we
compute As, Aq, H,, and their derivatives on a grid in the
(7, 7' plane and we interpolate, as in Morbidelii (1992}.
The results of this integration are presented in Section
3.1 for the 2/1 resonance and in Section 4.1 for the 3/2
one.

2.2 The Three-Dimensional Problem

As we have seen at the beginning of this section, the
three-dimensional problem is a six-degree-of-freedom
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problem containing all the phase space variables (Eq. (3)),
except the couple (A", A').
The Hamiltonian of this problem is

H = gsAs + gl + sehig + o + K, (14)
where the unperturbed part %, can be written
Ho = (o, S, 8., N + Hy(or, S, 0., 5., Ny (15)
and where the perturbation ¥, has the form
Hy = ms s, s + msHyg + nseH (16)

¥, s containing the harmonics in @3, 3, 4 the harmonics
in @, and ¥,  the harmonics in ()"

Let us first introduce action—angle variables for the
three-degree-of-freedom separable Hamiltonian . We
define

2ar 1
=, J_ngﬁsm
b, =0, —p, J, 0T, J, =5, (17
¢ =v—-p'WJ.J F), J =N

With this choice of variables, the unperturbed part (Eq.
(15)) of the Hamiltonian (Eq. (14)) is reduced to

@(] = g()(']('-’s']:s‘]w) + @ﬂl(ws‘l’ labz’JZ"]’)' (18)
Averaging over i, ¥, is transformed into
Fo= Pl LT + T30, T, T), (19)

the action J being now a constant as the whole Hamilto-
nian, including the perturbation, is becoming independent
of . This averaging can be performed in a consistent way
provided that there are no relevant secondary resonances
between i and , . As a matter of fact, according to Morbi-
delli and Giorgilli (1990) s is 10 times larger than §, at e ~
0.2 inboth 2/1 and 3/2, so that such secondary resonances
should not be predominant in the region of not small
eccentricity where secular resonances will be located.
With little loss of generality, we may restrict our study
to the limiting case J— 0, which corresponds to the family
of stable equilibrium points {pericentric branch) of the
first degree of freedom. In this case, the periodic functions
p and p, vanish, and the variables (J, 4., J,, ¢, J') are
exactly (J, o, §_, v, N) when evaluated along the pericen-
tric branch. For the sake of simplicity, we shall assume
that, from now on, each quantity refers to its value along
this branch, avoiding the introduction of new notations;



322

forinstance, o, = w and » = —&, whereas the semimajor
axis becomes a function of ¢ and i. The integrable part
(Eq. (19)) of the Hamiltonian reads then Fy(w, S., N).

The dynamics of F(w, S.., N)is dominated by the term
in i’ cos 2w. Three typical phase space portraits of it are
given in Fig, 5 (see Section 3.2 for comments) for three
different values of N. A global view, taking into account
the variations of N, is given in the plane (e, i, @ = 7/2)
in Figs. 6 and 13, the leftmost zones of which correspond
to w < { and the rightmaost zones to w > 0.

Let us introduce action-angle variables for the two-
degree-of-freedom separable Hamiltonian Fy(w, S., N).
We define

2 _ !
bo =, J’m—zﬂ_ﬂgS:dm
(20)
@' =v—plk,. J,.J) J =N,

where the integral i1s now computed along a given torus
of Fyw, S_, N), T, being the period on the torus.

The integrable part Fyw, S,, N) of the Hamiltonian
(Eq. (14)) becomes now H,(J,, J) and the unperturbed
frequencies are

b~ _2m
LAY A an
o, a1 1, 8%,
v A

On the other hand, with the introduction of the ac-
tion—angle variables (20) into the perturbation, the total
Hamiltonian (Eq. (14)) is transformed into

H = gsAl + geé + s + H (T, )
+ ns 6l 16y, S, @, T )
+ ms 537y s o 0, S @F) (22)
+ ms ol gl oy 0L T Gog).
Let us now consider the secular resonances introduced
by the perturbation; these are given by /1 commensura-
bilities between the mean frequency of the longitude of
perihelion of the asteroid and one of the frequencies g
and g, of Jupiter’s longitude of perihelion and also by the
1/1 commensurability between the mean frequency of the
longitude of the node of the asteroid and the frequency
5, of Jupiter's longitude of node. They correspond thus
to oy, + g5 = 0 (for vs), @, + g, = 0 (for v}, and (@) +
w, + 5 = 0 (for v)), where {@) is equal to w, (resp. —w,)
in the region of positive (resp. negative) circulation of w,
its value being 0 in the libration zone.
These secular resonances can be located in the plane
(e, {) by drawing the level curves of w, = —gs5, w, =
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—8¢- and (@) + w, = —s, as functions of the initial
conditions of integration (e, i, w = #/2). The results for
the 2/1 resonance are given in Fig. 7 and for the 3/2 one
in Fig. 14. In these figures, we have only plotted the v,
resonance, which stays in the region of negative circula-
tion of . The secular resonances v, and v are not plotted:
they are very near the w-separatrix, in the region of posi-
tive circulation of w.

In order to describe the v resonance, we shall now
restrict our study to the region of negative circulation of
w. In this region, the effect of the harmonics in &; and @y
is negligible and the Hamiltonian (Eq. (22)) is reduced to

H o= seMje + Hyld,, T (23)
+ ns g d) s, I L S )

As in the planar case, we introduce canonical variables
appropriate to the secular resonance involved. These are

lbm’ J;u = Jw + \],
Ye=¢ -y, + 8, J (24)
v, Hig = Afg = J'

and transform the Hamiltonian (Eq. (23)) into

K= solllg + T') + Ho(J T + 1 Ty solWor Jos i J').
(25)

The two-degree-of-freedom Hamiltenian (Eq. (23)) is
finally averaged with respect to ¢, which, in the region
of the phase space near the v, resonance, is a much faster
variable than 4j,. This provides us with the integrable
Hamiltonian for the v, resonance,

Ho= 50+ HT, T) + AT, T) cos(ie), (26)

with

AT 7Y = 2 [ F, w0, 500, o6
Tm 0 (27)

+ (o, — wy)t, N(£}, Q) = 0) dt

and where i' = ns 4 and i, = ()" — 1); the integral is
computed along the torus (J,, J') of %, as in Eq. (20).
The action J, = J,, + O(i') is now an integral of motion,
and, for each value of J,,, we can compute the location
of the separatrices of Eq. (26) and draw their traces in
the plane (e, i, ® = @/2, ¢y = P*) in order to see the
amplitude of the »,, resonance, * being the value of ]
corresponding to the stable equilibrium point of Eq. (26},
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The results are preser{led in Section 3.2 for the 2/1 reso-
nance and in Section 4.2 for the 3/2 one.

3. THE 2/1 MEAN MOTION COMMENSURABILITY

This section is devoted to the description of the dynam-
ics in the 2/! mean motion resonance. First we analyze
the dynamics on the plane, assuming the inclinations of
all the planets to be zero. Later, we shall take into account
the inclination of Jupiter’s orbit over the reference plane
and the precession of its longitude of node; this leads us
to investigate the dynamics in three dimensions.

3.1. Motion on the Plane

In first approximation, we assume the orbit of Jupiter
to be circular, therefore assuming the eccentricity of Jupi-
ter as a perturbation parameter. From the physical point
of view, this is justified by the fact that the motion de-
scribed by the circular problemis the one with the shortest
timescale.

After averaging over the mean longitude of Jupiter (A"},
the planar circutar problem is integrable. For a complete
discussion of this problem, taking into account also the
collisions with Jupiter and the bifurcations of families of
equilibrium points (which are the periodic orbits of the
nonaveraged problem}, we refer to Moons and Morbidelli
{1992). For our purposes here it is sufficient to recall that
the dynamics described by the averaged circular problem
(also outside of the plane) has a constant of motion

N=V({1 — w2 — V1 - e*cosi), {28)

where a, e, and | are the semimajor axis, the eccentricity,
and the inclination of the asteroid, respectively. On the
reference plane { = 0 the curves N equal constant have
the shape plotted in Fig. 2. In the same picture the solid
line denotes the main stable family of equilibrium points,
usually called the pericentric branch. The two thick lines
on the sides of the picture denote the separatrices, which
can be considered as the real bounds of the mean motion
resonance. Indeed the critical angle of the resonance, here

ag=2" -\ —

A and @ being the mean longitude and the longitude of
perihelion of the asteroid} librates for all orbits with initial
conditions at ¢ =  between the two thick lines. For
these orbits, « and e oscillate, together with the libration
of ¢, on a line N = constant, passing from the left side
to the right side of the stable branch and vice versa. The
maximal distance from the stable branch is reached when
o = 0 (& < 0 on the left side and & > 0 on the right side).
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FIG. 2. Dynamics in the 2/1 commensurability: the centrzl bold
curve is the stable family of periodic orbits of the planar circular re-
stricted problem; the two thick lines on the sides denote the separatrices
at o = 0 the solid lines mark some levels N = constant and the dashed
lines denote some level J = constant (all J values multiplied by 1077,
The semimajor axis unit is a'.

Therefore, the separatrices denote the maximal libration
amplitude.

The separatices disappear for N = 0.8. In some sense
we are no longer in presence of a resonance. We skip the
study of this region, since it has been already investigated
in detail by means of truncated models, as in Lemaitre
and Henrard (1990}, Moreover, n a4 previous paper
{Moons and Morbidelli 1992) we have studied extensively
this region by computing numerically Poincaré sections
of the averaged planar elliptic three-body problem. Con-
versely, at large eccentricity, we limit our study to librat-
ing orbits in the interval 0.604 < a < 0.636: indeed these
orbits avoid collisions with Jupiter, being deeply inside
the mean motion resonance (see Moons and Morbidelli
1992).

We come now to analyze the effects produced by the
gccentricity of Jupiter's orbit,

The main effect is that the action N i5 no longer a
constant of motion. N changes on a longer timescale (at
least 10 times longer than the period of libration of o)
together with the motion of the asteroid’s longitude of
perihelion and with time (since Jupiter’s eccentricity and
perihelion change with time). However, the area J en-
closed by the trajectory during the o-libration (rigorously
defined in Section 2} is an adiabatic invariant. In Fig. 2
the dashed lines denote a few curves J = constant on the
{a, ) plane at o = 0. This picture should be interpreted
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FIG. 3. Secular resonances in the 2/1 commensurability on the plane
i = 0: the solid bold line marks the location of the v resonance, the
dashed bold line the location of the v,; the two thin solid lines and the
two thin dashed lines denote the separatrices of vs and v respectively;
the dotted lines are the J levels on which numerical integrations of the
two-resonance secular system are performed.

as follows: the dynamics change slowly, changing the
value of N, but in such a way that any time o = 0, ¢ and
e are always on the same dashed line.

The variation of N can have different behaviors, (small,
large, regular, or chaotic) in the different regions of the
space. In particular, relevant phenomena can occur near
the two secular resonances vs and . In Fig. 3 we report
the location of these two resonances, the bold solid line
denoting the v and the bold dashed line the v,. Moreover
the couple of solid lines (for v;) and the couple of dashed
lines {for vy} delimit the amplitudes of the two secular
resonances. These are computed by taking into account
only one resonance at a time, namely neglecting all mutual
interactions, and are defined by the location of the corre-
sponding separatrices (see Section 2 for a detailed descrip-
tion of the procedure).

As one sees, both resonances shrink for some given
value of the action J (the dotted lines denoting the same
J curves as in Fig. 2). This is due to the fact that the
topology of the resonances changes: the stable and the
unstable equilibrium points exchange their position, and
in this transition the amplitude of the resonance goes to
zero. This is the picture one gets, of course, neglecting
mutual interactions between the resonances, and this is
a crude approximation, since the two resonances overlap.
In particular, one can expect a lot of chaos to be generated
by this overlapping.

MORBIDELLI AND MOONS

The best way to study the interaction between the two
secular resonances is to integrate numerically the secular
system on different surfaces J = constant (see Section 2
for the details). In Fig. 4 we report our results concerning
the four values of J indicated in Figs. 2 and 3.

Each picture of Fig. 4 is a surface of section of the
secular system. The coordinates reported on the axes are
Nand g = @ — g4, the latter being the critical angle of
the »; secular resonance. The section is made on the
critical angle of the v, resonance, namely g¢' = & — g¢
(0 or 7w depending on the J-level in study). It is worth
noting that, g being the average frequency of Jupiter’s
longitude of perihelion &, and g, the average frequency
of Saturn’s longitude of perihelion &g, the critical angles
g and g’ are usually indicated in the literature as @ — w,
and @ — @, respectively.

We stress that our surfaces of section are not transver-
sal to the dynamics; namely, they are not Poincaré sec-
tions. This is due to the fact that the angle ¢’ may circulate
in both directions or librate. However they are very useful
in distinguishing chaotic motion from a quasi-integrable
one. The lines N = constant and J = constant of Fig. 2
allow translation of the results into the original variables
aand e,

The first picture of Fig. 4 has been computed for J =
0.166 x 107°, The section is made at ¢’ = 7. The chaotic
region dominates for N = 0.88 (¢ = (.45); only a small
island of regular motion exists at N = 0.98, g = 0. This
is the core of the v; secular resonance. Chaotic orbits may
escape from the Solar System, the action N exceeding
1.3, i.e., the eccentricity becoming larger than 1. Regular
trajectories (i.e., invariant tori) with circulation of g exist
only at moderate eccentricities.

The second picture of Fig. 4 has been computed for
J = 6.775 x 107* The section is made at ¢’ = «. Such
a value of J corresponds to the change of topology in the
vs resonance, as one can see in Fig. 3. The numerical
integration shows two small regular islands at ¢ = 0 and
g = w. The two islands are independent, each one corre-
sponding to a different orbit. This is what is left of the v,
resonance while it shrinks. The chaotic region is very
small, since the v; resonance is almost nonexistent. The
two pairs of regular tori which cross the axis ¢ = 0 be-
tween N = 1.08 and N = 1.1 are the trace of an island
of regular motion of the v, resonance, where ¢’ = @ —
gl librates. Regular trajectories exist for N = 0.97 and
N=1.15atq = 0.

The third picture of Fig. 4 has been computed for J =
9.659 x 1072, The section is made at ¢ = . Now it
is the v, resonance which shrinks, changing topology;
therefore the chaotic layer is again small. A wide regular
island exist at ¢ = =, which is the libration region of the
vs resonance.

Finally, the last picture of Fig. 4 has been computed
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9.659 x (073 Bottom right, J = 16.87 x 1073, See text for comments.

for / = 16.87 x 107*, The section is made at ¢’ = 0.
The interaction between the two secular resonances is
very strong again: the chaotic layer is large, and only a
small island of regular motion exists at ¢ = #. Invariant
tori with circulating g exist only for N = 0.97 (i.e., e =
0.6).

In conclusion, we point out that the interaction be-
tween the two secular resonances 18 very important and
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gives origin to wide chaotic layers where islands are
small. This result is completely different with respect
to the one obtamned in the framework of the restricted
three body problem (see Yoshikawa 1989), where only
one secular resonance is present in the model. However,
orbits with small J (i.e., small amplitude of libration in
o} and moderate eccentricity turn out to be regular, at
this stage.
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Typical phase-portrait of the dynamics of the argument of perihelion. in polar coordinates (i, w). The picture on the left concerns a

N-leve! which does not intersect the resonance; the picture in the center concerns a N-level which intersects only the stable family; the picture

on the right is for a N-level which cuts both stable and unstable families.

3.2. Motion Outside of the Plane

Even in the framework of the restricted circular three
body problem (¢' = (), the averaged Hamiltonian describ-
ing a mean motion resonance at nonzero inclination is
nonintegrable, since it depends on two angles, namely
the critical angle o and the argument of perihelion w. A
perturbation approach is necessary in order to explore
the dynamics, finding out an integrable approximation.
This is what we do by successive elimination of harmonics
(see Section 2). Here we show the results obtained for
orbits with small amplitude of libration in o, namely in
the limit J — 0, This is done for simplicity, in order to
be able to represent the dynamics on a two-dimensional
plane with coordinates e and i; the semimajor axis can
be climinated in this way, since we are working along the
pericentric branch,

In Fig. 6 the dotted curves denote the levels N = con-
stant, with N given by Eq. (28). Eccentricity and inclina-
tion evolve on these lines as a consequence of the motion
of the argument of perihelion .

The motion of wis not a simple one. A resonance occurs
at large eccentricity. A typical portrait of the dynamics
is that shown in Fig. 5. Stable angd unstable equilibrium
points form families parametrized by the value of N. In
Fig. 6 the solid line denotes the family of stable equilib-
rium points, where the argument of perihelion w is fixed
at «/2 or 377/2; the dashed line denotes the unstable family
of equilibrium points, withw = 0 or w = 7; the two thick
lines mark the position of the separatrices at = /2,
37/2. The argument of perihelion circulates with negative
derivative for any imitial condition on the left side of the
leftmost separatrix and circulates with positive derivative
on the right side of the rightmost one. Conversely, any

orbit with initial conditions between the two separatrices
at @ = 7w/2 or w = 37/2 librates around the stable family,
The location of the families of periodic orbits has been
found first by Morbidelli and Giorgilli (1990j, and we con-
firm here that result, providing also a global description
of the dynamics.

We come now Lo the effects produced by Jupiter’s ec-
centricity and inclination and their time-dependent varia-
tions. We restrict our analysis to the region of negative
circulation of w, in particular in the region with ¢ < 0.4,
In this region, neither the v5 nor the »¢ secular resonances
are present; indeed both can be found only in the region
of positive w-circulation, near the w-separatrix. Therefore
their effects are not very relevant, as it already happened
on the plane at small eccentricity.

Much more relevant is the effect of Jupiter’s inclination
and of the precession of its [ongitude of node. This causes
the slow variation of N, the action J, being an adiabatic
invariant {see Section 2). In Fig. 7 the dotted lines denote
some levels J. = constant. Again the picture must be
interpreted in the following way: the dynamics change
slowly, changing the value of N, but in such a way that,
any time w = 7/2, ¢ and i are always on the same dotted
line.

Like in the planar case, the variations of N are relevant
close to a secular resonance. In Fig. 7 the bold dashed
line denotes the location of the » secular resonance,
which is the corotation of the longitudes of the node of
the asteroid and of Jupiter, denoted by {1 and Q,, respec-
tively. The result is astonishing: the resonance cuts the
plane i = 0 at moderate eccentricity, namely ¢ = 0.21;
therefore it would cross a family of fictitious asteroids
with the same distribution of ¢ and { like that of the Hildas.
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FIG. 6. Dynamics outside of the reference plane, in the restricted
circular three-body problem: the solid curve is the stable family of
equilibrium points of the argument of perihelion (w = «/2, 37/2); the
dashed line is the unstable one (@ = 0, #); the two thick lines denote
the separatrices of the region of w-libration at w = 7/2; the dotted
curves are levels N = constant.

Is this enough to explain the puzziing existence of the
Hecuba gap?

Unfortunately, this is not the case, apparently. The
v|; Tesonance seems isofated from the resonance of the
argument of perihelion and from other secular resonances
of low order. This allows us to construct easily an integ-
rable model to describe its dynamics, using the technique
of successive elimination of harmonics (see Sectton 2). In
this way we can compute the amplitude of the resonance
(denoted by the two dashed lines in Fig. 7) given by the
location of the separatrices of this integrable model and
determine that the banana-shaped libration of the critical
angle of the secular resonance, namely (0 — ,, is always
around 7. However, even if this can explain periodic
excursions to the region at high inclination, it does not
explain why the asteroids should be absent, Indeed, there
is no clear mechanism for the depletion of asteroids at
large inclination; on the other hand, looking at the lines
J., = constant, we can predict that during the variation
of the inclination, the eccentricity should be bounded to
moderate values.

We have performed a few numerical integrations of
fictitious astercids in order to confirm our previsions on
the existence and on the dynamics of the v, resonance.
These have been made by using the Everhart’s numerical
integrator RA15 and integrating the full equations of mo-
tion of the Sun—asteroid—Jupiter—Saturn system. No sim-
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plifications have been introduced in this model {apart hav-
ing neglected the other planets of the Solar System).
Figure 8 shows one of our results. The picture on the left
in Fig. 8 shows the evolution of the asteroid orbit in polar
coordinates {, & — ;. The arrows indicate the direction
of the motion. The first part of the orbit is evidently a
banana-shaped libration around ) — ), = 7; afterwards
a transition occurs to the outer region where 0 — £},
circulates counterclockwise. As a consequence, the incli-
nation passes from 10° to 24°,

This numerical simulation proves the existence of the
vy, secular resonance in the 2/1 mean motion commensu-
rability; it is in good agreement with the theoretical com-
putations of the location and on the amplitude of the
resonance. As matter of fact, the numerical simulation
shows that the resonance should be shifted to somewhat
farger eccentricity with respect to the position computed
in Fig. 3 {Ae —~ 0.03). This should be due to the fact that
our orbit has a nonnegligible amplitude of libration in &
of about 40°. Indeed, we have verified that the secular
resonance is shifted to larger ¢, with increasing J.

The picture on the right in Fig. 8 shows the evolution
of the eccentricity over the 1.5-Myr integration. As one
sees, it does not increase significantly and never reaches
dangerous values for the asteroid’s life. Indeed, the vy
secular resonance acts on the inclination and not on the
eccentricity. At this stage, therefore, we are not able to
explain, by the »,, mechanism, the existence of the Hec-
uba gap. Longer and more sephisticated numerical inte-
grations should be necessary in order to explore whether
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FIG. 7. The location of the ¥y secular resonance (bold dashed line)
and its separatrices (thin dashed lines). The dotted curves denote some
fevels J, = constant.
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0.0, 0 = 381.01575,/ = 10.0, ¢ = 0.2, a =

3.27278475, 1 = 205.0485; Jupiter: ey = 68.21540, £}; = 200101575, i = 0.36H8, ¢; = 0.04819, a; = 5.20315540, {, = 34.36331; Saturn: ws =
324.39864, Q5 = 21.015375, iy = 0.89097, e5 = 0.05469, ay = 9.52355280, Iy = 179.52366. The angles are given in degrees.

at large inclination a sort of diffusion to large eccentricity
is possible, jumping from one high-order secondary reso-
nance to another, on a very long timescale. Moreover,
the region with small eccentricity and smalil inclination
(e = 0.2, i = 10°) seems to be protected from the v
resonance. As a matter of fact one real asteroid exists in
that region; called 3789 Zhongguo, it has actually the
following osculating elements: a = 3.272[81, ¢ = 0.1955,
i = 2,75441, and o ~ —61.12°, It would be interesting to
have a long-time numerical simulation, in the past and in
the future, of this object.

4. THE 3/2 MEAN MOTION COMMENSURABILITY

In this section we describe the dynamics in the 3/2
mean motion resonance; we follow the same approach
adopted for the exploration of the 2/1, in order to point
out in a better light their similarities and differences.
Again, we start by analyzing the motion on the reference
plane, assuming the inclination of the planets equal to
zero. Later, we study the dynamics in three dimensions,
taking into account Jupiter’s inclination and the preces-
sion of its node.

4.1, Motion on the Plane

In the case of the 3/2 mean motion commensurability,
the critical angle of the resonance o is

o =3\ - 28 - &,

whereas the constant of motion N of the averaged re-
stricted circular three-body preblem is now

N =Vl — pa@ - VI - e’cosi). (29)
In Fig. 9, we report some curves N = coenstant on the
plane i = 0. The bold solid line denotes the main stable
tamily of equilibrium points of the averaged planar circu-
lar problem, i.e., the pericentric branchk. The two thick
lines on the sides of the picture denote the separatrices.
As in Section 3, their positions have been plotted for
g =10

The eccentricity of Jupiter’s orbit forces N to change.
As in the case of the 2/1 commensurability, this is an
adiabatic process, in the sense that the area J enclosed
by the trajectory during the o-libration is preserved. The
dashed lines in Fig. 9 denote some levels J = constant
in the (a, e) plane at o = 0.

In Fig. 10 we plot the location of the secular resonances
vs (bold solid line) and v, (bold dashed line); their ampli-
tudes, computed by considering each resonance as an
isolated one, and neglecting mutual influences, are indi-
cated by the two solid lines (v5) and dashed lines (7). The
crosses denote the osculating values of ¢ and e for the
asteroids in the Hilda group.
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FIG, 9. Dynamics in the 3/2 commensurability: the same as in
Fig. 2.

A few differences with respect to the case of the 2/1
commensurability must be emphasized:

» both secular resonances occur at smaller eccentricity,
the lowest separatrix of the v; reaching e = 0.25;

» neither the v5 nor the vg shrinks for some value of J;
namely, the two secular resonances do not change their
topology;

o the v; and the v resonances look much closer each
other; the overlapping is complete, the v, being “‘inside”
the »s.

As in Section 3, we have performed numerical integra-
tions of the secular system on the four J levels denoted
by dotted lines in Fig. 10 (the same as in Fig. 9); this is
done in order to take into account both secular resonances
together and venfy the effects of their interaction.

The results are illustrated in Fig. 11: the coordinates
of each picture are N and ¢ = @ — g4 and the section
of the motion is computed at ¢' = @ — g = 0. The N
levels and J levels in Fig. 9 allow the translation of the
resuits in the original variables ¢ and e,

The first picture is made for J = 0.083 x 1073, Regular
motion is possible only for N = 0.452 (approximately ¢
< 0.25) at ¢ = w. A big chaotic region exists for N =
0.454 and g = «, where only three regular islands are
visible. We stress that these islands do not correspond to
a 3:1 resonance as in the case of a classical Poincaré
section; we note also that the island above does not have
the same volume as the two ones below. This is precisely
due to the fact that our section is not transversal to the
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motion, since the dynamics of g’ is complicated. In Fig.
12 we show the stabie periodic orbit which is in the center
of the three islands., The picture on the left of Fig. 12
shows the periodic orbit in the variables (g, N); the picture
on the right shows the same periodic orbit in the variables
{g’, N). On a section at ¢’ = 7 this gives three distinct
dots on the (g, N) plane.

The second picture is computed for J = 4.919 x 1073,
A relevant island of regular motion 1s visible in the middle
of a wide chaotic layer. Regular motion with circulating
g is possible only at large and small N (i.e., ¢ = 0.2 and
e = 0.45),

A similar scenario is visible in the third and the fourth
pictures. In the fourth one (J = 11.02 X 1073, a relevant
island of regular motion is visible also at ¢ = 0. This
is due to the fact that, as illustrated in Fig. 10, the J
level in study cuts twice the location of the secular
resonance.

The conclusion is similar to that for the 2/1 mean
motion commensurability: interaction between secular
resonances gives origin to a wide chaotic layer. How-
ever, regular motion is possible at moderate eccentricity.
It is curious to notice that such a regular region is
smaller in the 3/2 commensurability (¢ < 0.25 at ¢ =
7) than in the 2/1 (¢ < 0.45 al ¢ = 0). Nevertheless,
the 3/2 hosts the asteroids of the Hilda family. These
asteroids avoid the v resonance and its associated
chaotic layer, since they are phase protected, as shown
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FIG. 10.  Secular resonances ps and v, and their separatrices in solid
lines and dashed lines respectively. The crosses denote the asteroids
of the Hilda group (osculating values). The asteroids which seem to
appear inside the vg secular resonance are in fact phase-protected as
explained at the end of the section 4.1.



330

0.40

LI I B I S B N N e e B A N B Bk e B S

0.55

|

0.50

Q.45

{1IIllllII[IIIL![I!I|1[LI!1!1!1]

0 1 2 3 [4 S é
q

:_r?lf_f?ff_fll!frlll!Till!flll

T

.58

Q.56

0.54

N
0.52
< I

Lieia vy 1

30

0.

o)

aml_llxl_L.

0.48

0.4

0 1 2 3 4 5

FIG. 11.
8.581 x 107 Bottom right: J = 11.02 x 1073, See text for comments.

by Ferraz-Mello (1988), Morbidelli and Giorgilli (1990),
and Michtchenko and Ferraz-Mello (1992); indeed, the
Hildas with an eccentricity larger than 0.25 (and which
therefore appear in Fig. 10 inside the v»; resonance)
have a critical angle g close to zero so that they avoid
the chaotic layer, As a matter of fact, the chaotic layer
is present at ¢ = 0 only at e = 0.4, as one can see
in the first picture of Fig. 11.
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4.2. Motion Qutside of the Plane

As in the case of the 2/1 mean motion commensurabil-
ity, we restrict our analysis to orbits with small amplitude
of g-libration, since all computations are performed in
the limit J — 0.

Figure 13 shows by dotted lines some levels N = con-
stant ‘on the ¢, { plane, the eccentricity ranging from 0.05
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FIG. 12. The periodic orbit at the center of the three stable islands

in the simulation at J = 0.083 x 1072, On the left the coordinates are
(4. N): on the right (g", N).

to 0.95. The solid line and the dashed line denote the
stable and the unstable families of equilibrium points of
the argument of perihelion. On the stable family, the argu-
ment of perihelion @ is equal to /2 or 37/2; on the unsta-
ble one it is 0 or 7. The two thick lines denote the position
of the separatrices at @ = /2 between the w-libration
and w-circulation regions (& < 0 on the left and @ > 0 on
the right). The global dynamics are like that in Fig. 5.
With respect to the 2/1 mean motion commensurability,
we ohserve that the resonance of the argument of perihe-
lion occurs at smaller eccentricity.

In the region of negative circulation of w, we proceed
in analyzing the dynamic effects of Jupiter’s eccentricity
and inclination. Neither the v nor the v, resonances are
present; both can be found only in the region of positive
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FIG. 13. Dynamics outside of the reference plane in the circular
restricted problem. The same as Fig. 6.
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FIG. 14. The location of the », resonance (bold dashed line) and
its amplitude (thin dashed lines). The dotted curves denote some levels
J. = coostant. The thick line is the separatrix of the w-resonance.
Crosses denote the asteroids of the Hilda group (osculating values).

circulation near the w-separatrix, at e > 0.45. If we neglect
Jupiter’s eccentricity and consider only its inclination
over the reference plane and the precession rate of its
longitude of node, we get the scenario illustrated in Fig,
14. The dotted lines show the level curves of J; like in
the case of the 2/1 commensurability, the values of ¢ and
iat w = w/2 evolve along these lines, as a consequence
of the changes of N. The », secular resonance, which
forces large variations of /V and therefore of the asteroid’s
inclination, is present in this portion of the space and is
denoted by the bold dashed line. The two dashed lines
on both its sides indicate the separatrices of the secular
resonance.

A difference with respect to the 2/1 case is striking.
The v, secular resonance is at larger eccentricity and
inclination. Therefore, a large region of regular motion
exists at moderate ¢ and i. The asteroids of the Hilda
group, denoted by crosses in Fig. 14, are all in this region.
They escape the v, resonance, so that they do not have
jumps in the inclination. Their critical angle {3 — ), circu-
lates clockwise.

5. CONCLUSIONS

We have pointed out the relevant role of secular reso-
nances inside the 2/1 and 3/2 mean motion commensura-
bilities. In particular, the interaction between v5 and vy
gives origin to a wide chaotic layer at large eccentricity.
Conversely, the v\ resonance, which pumps up the aster-
oid’s inclination, is present at moderate eccentricity in
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the 2/1 and at larger eccentricity in the 3/2. Therefore,
the distribution of the asteroids in the Hilda group (3/2
commensurability) is bounded by this secular resonance,
which, on the contrary, would cross a fictitious family in
the 2/1. This gives new hints for the possible explanation
on the existence of the Hecuba gap and the Hilda group.
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