Multi-GPU parallelization for 3D tomographic reconstruction

Algorithm Architecture Adequacy for solving inverse problems

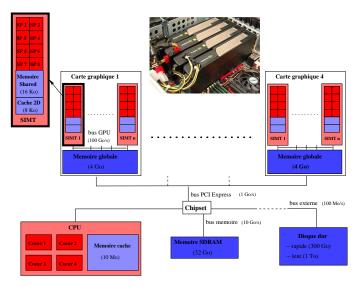
Nicolas GAC (Ass. Prof. Université Paris-sud) Groupe Problèmes Inverses (GPI) L2S (CentraleSupélec/CNRS/Univ Paris Sud) actuellement en délégation CNRS (6 mois) au laboratoire Lagrange

Travaux sur le projet SKA avec André Ferrari

Séminaire du laboratoire Lagrange, site Valrose, 28 novembre 2017

The beauty, reconstuction algorithms for SKA

...and the beast, multi GPU servers



3/78

GPU (Graphic Processing Units) : hardware and software Solving (ill-posed) inverse Problems with big dataset [Tomo3D] Parallelization on the many cores of each GPU board

GPU (Graphic Processing Units) : hardware and software

- GPU (re)designed as a many core architecure
- Programming in CUDA
- A toy example : acceleration of matrix multiplication

Solving (ill-posed) inverse Problems with big dataset

- Iterative (bavesian) algorithm
- Applications

[Tomo3D] Parallelization on the many cores of each GPU board

- Hardware acceleration of Hf and H^t operators
- Projection on GPU
- Backprojection on GPU

[Tomo3D] Parallelization on the GPU boards of the server

- multi-GPU Parallelization
- CUDA Streams
- CUDA Half float
- Distribution/Centralization of Data

GPU (re)designed as a many core architecure Programming in CUDA A toy example : acceleration of matrix multiplication

1 GPU (Graphic Processing Units) : hardware and software

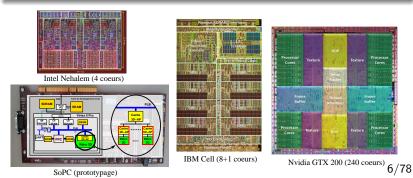
- GPU (re)designed as a many core architecure
- Programming in CUDA
- A toy example : acceleration of matrix multiplication
- 2 Solving (ill-posed) inverse Problems with big dataset
- [] [Tomo3D] Parallelization on the many cores of each GPU board
- [4] [Tomo3D] Parallelization on the GPU boards of the server

GPU (re)designed as a many core architecure Programming in CUDA A toy example : acceleration of matrix multiplication

Calcul haute performance

High Performance Computing (HPC)

- Parallélisation sur machines multi-processeurs
 C Efficace sur machine à mémoire distribuée
- Noeuds de calculs performants
 - ➔ processeurs multi-core, many-core ou FPGA/ASIC



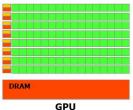
GPU (re)designed as a many core architecure Programming in CUDA A toy example : acceleration of matrix multiplication

GPU : Graphic Processing Unit

Evolution vers une architecture many core

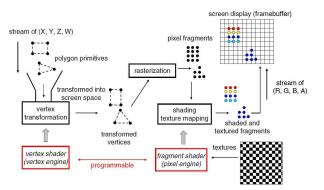
- A l'origine, architecture dédiée pour le rendu de volume
 D'ipeline graphique (prog. en OpenGL/Cg)
- Depuis 2006, architecture adaptée à la parallélisation de divers calculs scientifiques

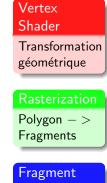
⊃ CUDA : Common Unified Device Architecure (prog. en C)



GPU (re)designed as a many core architecure Programming in CUDA A toy example : acceleration of matrix multiplication

Avant CUDA : pipeline graphique





Calcul sur les Pixels

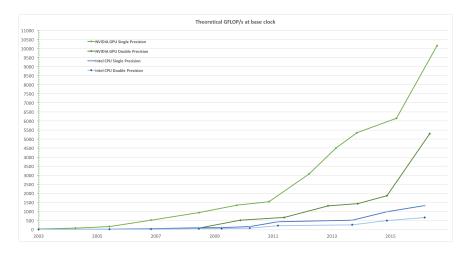
Shader

8/78

GPU (Graphic Processing Units) : hardware and software

Solving (ill-posed) inverse Problems with big dataset [Tomo3D] Parallelization on the many cores of each GPU board [Tomo3D] Parallelization on the GPU boards of the server GPU (re)designed as a many core architecure Programming in CUDA A toy example : acceleration of matrix multiplication

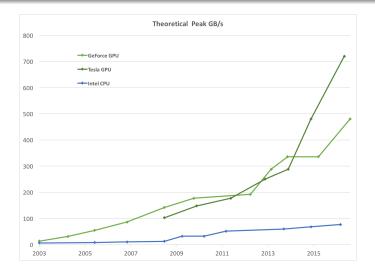
Puissance de calcul



GPU (Graphic Processing Units) : hardware and software

Solving (ill-posed) inverse Problems with big dataset [Tomo3D] Parallelization on the many cores of each GPU board [Tomo3D] Parallelization on the GPU boards of the server GPU (re)designed as a many core architecure Programming in CUDA A toy example : acceleration of matrix multiplication

Débit mémoire



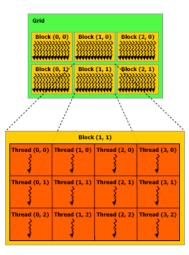
GPU (re)designed as a many core architecure Programming in CUDA A toy example : acceleration of matrix multiplication

Découpage en threads

	Matériel	Logiciel	Exécution	
	un Streaming Processor (SP)	un thread	séquentielle	(a)
	un Streaming MultiProcessor (SM)	un bloc de thread (plusieurs warps)	s parallèle (SIMT)	(b)
Mémoire globale	une carte GPU (device)	une grille de thre (kernel)	ads parallèle (MIMT)	(c)

GPU (re)designed as a many core architecure Programming in CUDA A toy example : acceleration of matrix multiplication

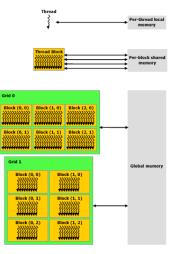
Un id par thread et un id par bloc de threads



GPU (Graphic Processing Units) : hardware and software

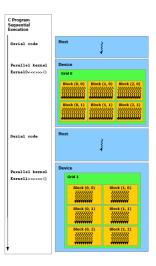
Solving (ill-posed) inverse Problems with big dataset [Tomo3D] Parallelization on the many cores of each GPU board [Tomo3D] Parallelization on the GPU boards of the server GPU (re)designed as a many core architecure Programming in CUDA A toy example : acceleration of matrix multiplication

Hiérarchie mémoire



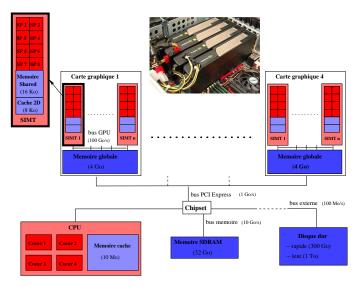
GPU (re)designed as a many core architecure Programming in CUDA A toy example : acceleration of matrix multiplication

PC hote et carte graphique



GPU (re)designed as a many core architecure Programming in CUDA A toy example : acceleration of matrix multiplication

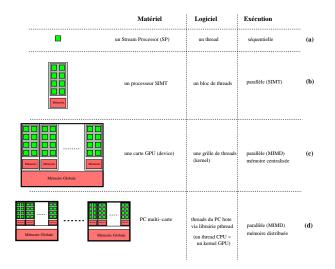
Supercalculateur personnel



15/78

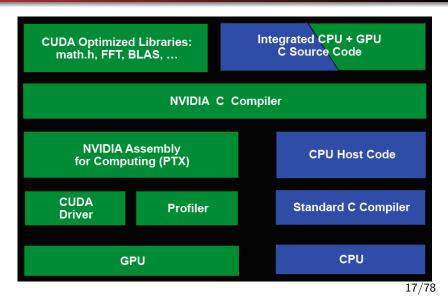
GPU (re)designed as a many core architecure Programming in CUDA A toy example : acceleration of matrix multiplication

Découpage en threads et en grilles (kernels)



GPU (re)designed as a many core architecure **Programming in CUDA** A toy example : acceleration of matrix multiplication

Flot de développement logiciel

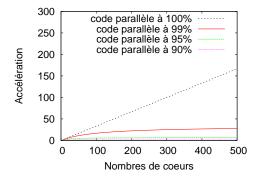


Programmation GPU

1 Parallélisation de l'algorithme

D nourrir en threads (plus ou moins indépendants) le GPU

n coeurs (1 Ghz)			
VS			
1 coeur (3 Ghz)			
taux de accélération			
parallélisation	GTX 200		
(240 coeurs)			
100 %	80		
99 %	24		
95 %	6		
90 %	3		



18/78

GPU (re)designed as a many core architecure **Programming in CUDA** A toy example : acceleration of matrix multiplication

Programmation GPU

GPU (re)designed as a many core architecure **Programming in CUDA** A toy example : acceleration of matrix multiplication

1 Parallélisation de l'algorithme

⊃ nourrir en threads (plus ou moins indépendants) le GPU

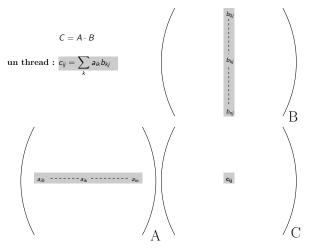
2 Implémentation GPU

Selon l'intensité arithmétique du code (puissance de calcul exploitée / débit des données), l'execution sera soit *memory bound* soit *computation bound* (ex : calcul X^k [?])

⊃ optimisation du code portera alors soit sur les **accès mémoire** ou soit sur la **complexité arithmétique**

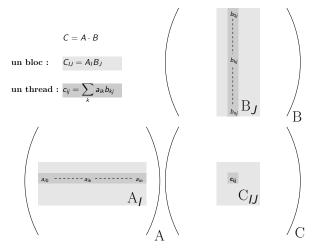
GPU (re)designed as a many core architecure Programming in CUDA A toy example : acceleration of matrix multiplication

Parallélisation du calcul matriciel



GPU (re)designed as a many core architecure Programming in CUDA A toy example : acceleration of matrix multiplication

Découpage en blocs de threads



GPU (re)designed as a many core architecure Programming in CUDA A toy example : acceleration of matrix multiplication

kernel = code des threads executés sur le GPU

```
__global__ void matrixMul_kernel( float* C, float* A, float* B,int matrix_size) {
```

```
float C_{sum};

int i_{first}, j_{first};

int i,j;

i_{first}=blockldx.x*BLOCK\_SIZE;

j_{first}=blockldx.y*BLOCK\_SIZE;

i=i_{first}+threadldx.x;

j=j_{first}+threadldx.y;

for (k = 0; k < matrix_size; k++)

C_{sum} += A[i][k] * B[k][j];

C[i][j] = C_{sum};

}
```

GPU (re)designed as a many core architecure Programming in CUDA A toy example : acceleration of matrix multiplication

Lancement du kernel depuis le PC hôte

```
#define BLOCK_SIZE 16
```

```
void matrixMul_host(int N) {
```

```
//setup execution parameters
dim3 threads(BLOCK_SIZE, BLOCK_SIZE);
dim3 grid(N /BLOCK_SIZE , N /BLOCK_SIZE );
```

```
//execute the kernel
matrixMul_kernel<<< grid, threads >>>(C_device, A_device, B_device, N);
```

```
•••
```

}

GPU (re)designed as a many core architecure Programming in CUDA A toy example : acceleration of matrix multiplication

Gestion de la mémoire GPU via le PC hôte

#define BLOCK_SIZE 16

void matrixMul_host(int N) {

// allocate host memory int mem_size= N^2 *sizeof(float); float* A_host = (float*) malloc(mem_size); float* B_host = (float*) malloc(mem_size); float* C_host = (float*) malloc(mem_size);

// allocate device memory
float* A_device,B_device,C_device;
cudaMalloc((void**) &A_device, mem_size);
cudaMalloc((void**) &B_device, mem_size);
cudaMalloc((void**) &C_device, mem_size);

// copy host memory to device cudaMemcpy(A_device, A_host, mem_size,cudaMemcpyHostToDevice); cudaMemcpy(B_device, B_host, mem_size,cudaMemcpyHostToDevice);

//setup execution parameters
dim3 threads(BLOCK_SIZE, BLOCK_SIZE);
dim3 grid(N /BLOCK_SIZE , N /BLOCK_SIZE);

```
// execute the kernel matrixMul_kernel <<< grid, threads >>>(C_device, A_device, B_device, N);
```

// copy result from device to host
cudaMemcpy(C_host, C_device, mem_size,cudaMemcpyDeviceToHost);

```
}
```

GPU (Graphic Processing Units) : hardware and software

Solving (ill-posed) inverse Problems with big dataset [Tomo3D] Parallelization on the many cores of each GPU board [Tomo3D] Parallelization on the GPU boards of the server

Temps GPU

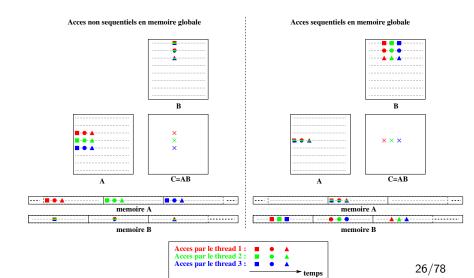
GPU (re)designed as a many core architecure Programming in CUDA A toy example : acceleration of matrix multiplication

Matrices de taille 1024.1024

	Processeur	Temps d'exécution	Transfert mémoire
C	Xeon Quad core	9.35 s	
non optimisé	2.7 Ghz		
Cuda	Testla C1060	1.35 s (*6,9)	< 1%
	240 PE @1,3 Ghz		
-			

GPU (re)designed as a many core architecure Programming in CUDA A toy example : acceleration of matrix multiplication

Accès séquentiels à la mémoire globale



GPU (re)designed as a many core architecure Programming in CUDA A toy example : acceleration of matrix multiplication

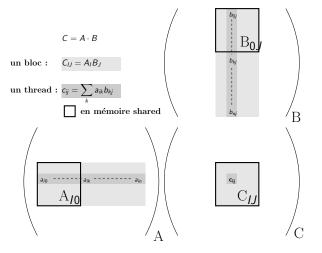
Temps GPU avec accès mémoire sequentiels

Matrices de taille 1024.1024

	Processeur	Temps d'exécution	Transfert mémoire
C	Xeon Quad core	9.35 s	
non optimisé	2.7 Ghz		
Cuda	Testla C1060	1.35 s (*6,9)	< 1%
	240 PE @1,3 Ghz		
Cuda	Testla C1060	124 m s (*10,9)	5%
acces seq.	240 PE @1,3 Ghz		
-			

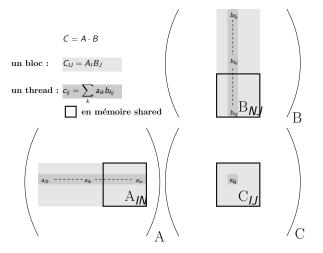
GPU (re)designed as a many core architecure Programming in CUDA A toy example : acceleration of matrix multiplication

Optimisation des accès mémoire



GPU (re)designed as a many core architecure Programming in CUDA A toy example : acceleration of matrix multiplication

Optimisation des accès mémoire



GPU (re)designed as a many core architecure Programming in CUDA A toy example : acceleration of matrix multiplication

Variable type qualifiers

__device__

- en mémoire globale
- durée de vie de l'application
- accessible par tous les threads de la grille et par le hôte via la librairie runtime

__constant__

- en mémoire globale (accès via cache constante)
- durée de vie de l'application
- accessible par tous les threads de la grille et par le hôte via la librairie runtime

__shared__

- en mémoire shared (locale à un coeur SIMT)
- durée de vie du bloc de threads
- seulement accessible par les threads d'un même bloc

Temps GPU optimisé

GPU (re)designed as a many core architecure Programming in CUDA A toy example : acceleration of matrix multiplication

Matrices de taille 1024.1024

	Processeur	Temps d'exécution	Transfert mémoire
C	Xeon Quad core	9.35 s	
non optimisé	2.7 Ghz		
Cuda	Testla C1060	1.35 s (*6,9)	< 1%
	240 PE @1,3 Ghz		
Cuda	Testla C1060	124 m s (*10,9)	5%
acces seq.	240 PE @1,3 Ghz		
Cuda	Testla C1060	17,5 m s (*7,1)	34%
shared mem.	240 PE @1,3 Ghz		

GPU (re)designed as a many core architecure Programming in CUDA A toy example : acceleration of matrix multiplication

Librairie CUBLAS : CUda Basic Linear Algebra Subprograms

 $\begin{array}{l} \# include < \!\! cublas.h \!\! > \\ \# include < \!\! cutil.h \!\! > \end{array}$

 $\begin{array}{l} \mbox{int main(void)} \mbox{ } \{ \\ \mbox{float alpha} = 1.0 \mbox{f, beta} = 0.0 \mbox{f;} \\ \mbox{int N} = 1024 \mbox{;} \\ \mbox{int mem_size} = 1024 \mbox{*}1024 \mbox{*}sizeof(\mbox{float}) \mbox{;} \\ \end{array}$

// Allocate host memory
float* A_host = (float*) malloc(mem_size);
float* B_host = (float*) malloc(mem_size);
float* C_host = (float*) malloc(mem_size);

cublasInit();

//Allocate device memory
float* A_device,B_device,C_device;
cublasAlloc(N*N, sizeof(float), (void **)&A_device);
cublasAlloc(N*N, sizeof(float), (void **)&B_device);
cublasAlloc(N*N, sizeof(float), (void **)&C_device);

// copy host memory to device cublasSetMatrix(N,N, sizeof(float), A_host, N, A_device, N); cublasSetMatrix(N,N, sizeof(float), B_host, N, B_device, N);

//Calcul matriciel sur le GPU
cublasSgemm('n', 'n', N, N, N, alpha, A_device, N,B_device, N, beta, C_device, N);

 $\label{eq:linear} $$ //Récupération du résultat sur le PC hôte cublasGetMatrix(N,N, sizeof(float), C_device,N, C_host, N); $$ (a) $$ (A) $$ (b) $$$

GPU (Graphic Processing Units) : hardware and software Solving (ill-posed) inverse Problems with big dataset

Solving (ill-posed) inverse Problems with big dataset [Tomo3D] Parallelization on the many cores of each GPU board [Tomo3D] Parallelization on the GPU boards of the server

Temps CUBLAS

GPU (re)designed as a many core architecure Programming in CUDA A toy example : acceleration of matrix multiplication

Matrices de taille 1024.1024

	Processeur	Temps d'exécution	Transfert mémoire
C	Xeon Quad core	9.35 s	
non optimisé	2.7 Ghz		
Cuda	Testla C1060	1.35 s (*6,9)	< 1%
	240 PE @1,3 Ghz		
Cuda	Testla C1060	124 m s (*10,9)	5%
acces seq.	240 PE @1,3 Ghz		
Cuda	Testla C1060	17,5 m s (*7,1)	34%
shared mem.	240 PE @1,3 Ghz		
CUBLAS	Testla C1060	12,8 m s (*1,4)	43%
	240 PE @1,3 Ghz		

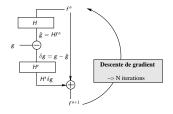
lterative algorithm : Mean square + quadratic reg Applications

GPU (Graphic Processing Units) : hardware and software

- Solving (ill-posed) inverse Problems with big dataset
 - Iterative (bayesian) algorithm
 - Applications
- 3 [Tomo3D] Parallelization on the many cores of each GPU board
- [] [Tomo3D] Parallelization on the GPU boards of the server

Iterative algorithm : Mean square + quadratic reg Applications

Without bayesian regularisation



$\mathbf{g} = \mathbf{H}\mathbf{f} + \epsilon$

- f : volume
- g : tomograph data
- H : acquisition model
- ϵ : noise

Criterion : Mean Square

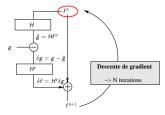
$$J(f) = ||g - Hf||^2$$

$$f^{n+1} = f^n - \alpha \cdot \nabla J(f^n)$$

$$\nabla J(f) = -2 \cdot H^t(g - Hf)$$

Iterative algorithm : Mean square + quadratic reg Applications

Without bayesian regularisation



 $f^n: {\rm Estim{\acute e}}$ du volume

$\mathbf{g} = \mathbf{H}\mathbf{f} + \boldsymbol{\epsilon}$

- f : volume
- g : tomograph data
- H : acquisition model
- ϵ : noise

Criterion : Mean Square

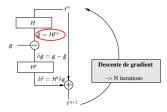
$$J(f) = ||g - Hf||^2$$

$$f^{n+1} = f^n - \alpha \cdot \nabla J(f^n)$$

$$\nabla J(f) = -2 \cdot H^t(g - Hf)$$

Iterative algorithm : Mean square + quadratic reg $\ensuremath{\mathsf{Applications}}$

Without bayesian regularisation



 \hat{g} : Estimée des données

$\mathbf{g} = \mathbf{H}\mathbf{f} + \boldsymbol{\epsilon}$

- f : volume
- g : tomograph data
- H : acquisition model
- ϵ : noise

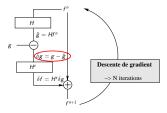
$$J(f) = ||g - Hf||^2$$

$$f^{n+1} = f^n - \alpha \cdot \nabla J(f^n)$$

$$\nabla J(f) = -2 \cdot H^t(g - Hf)$$

Iterative algorithm : Mean square + quadratic reg Applications

Without bayesian regularisation



 δg : Correction des données

$\mathbf{g} = \mathbf{H}\mathbf{f} + \epsilon$

- f : volume
- g : tomograph data
- H : acquisition model
- ϵ : noise

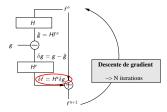
$$J(f) = ||g - Hf||^2$$

$$f^{n+1} = f^n - \alpha \cdot \nabla J(f^n)$$

$$\nabla J(f) = -2 \cdot H^t(g - Hf)$$

Iterative algorithm : Mean square + quadratic reg Applications

Without bayesian regularisation



 δf : Correction du volume

$\mathbf{g} = \mathbf{H}\mathbf{f} + \epsilon$

- f : volume
- g : tomograph data
- H : acquisition model
- ϵ : noise

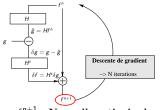
$$J(f) = ||g - Hf||^2$$

$$f^{n+1} = f^n - \alpha \cdot \nabla J(f^n)$$

$$\nabla J(f) = -2 \cdot H^t(g - Hf)$$

Iterative algorithm : Mean square + quadratic reg Applications

Without baysian regularisation



 $f^{n+1}: {\it Nouvelle}$ estimée du volume

$\mathbf{g} = \mathbf{H}\mathbf{f} + \epsilon$

- f : volume
- g : tomograph data
- H : acquisition model
- ϵ : noise

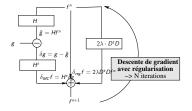
$$J(f) = ||g - Hf||^2$$

$$f^{n+1} = f^n - \alpha \cdot \nabla J(f^n)$$

$$\nabla J(f) = -2 \cdot H^t(g - Hf)$$

Iterative algorithm : Mean square + quadratic reg Applications

With bayesian regularisation



$\mathbf{g} = \mathbf{H}\mathbf{f} + \boldsymbol{\epsilon}$

- f : volume
- g : tomograph data
- H: acquisition model
- ϵ : noise

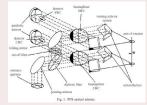
Criterion : Mean Square + Quadratic Regularisation (MSQR)

$$\begin{split} J(f) &= J_1(f) + J_2(f) \\ J_1(f) &= ||g - Hf||^2 \\ J_2(f) &= \lambda ||Df||^2 \\ f^{n+1} &= f^n - \alpha \cdot (\nabla J_1(f^n) + \nabla J_2(f^n)) \end{split}$$

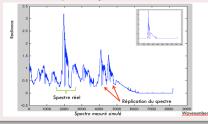
Iterative algorithm : Mean square + quadratic reg Applications

[Planéto] Correction de vibrations mécaniques

Collaboration avec l'IDES de l'Univ. Paris-Sud (F. Schmidt)



Instrument PFS (Planetary Fourier Spectrum) de la mission MARS EXPRESS

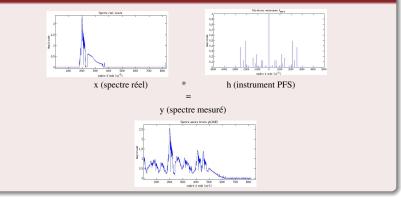


42/78

Iterative algorithm : Mean square + quadratic reg Applications

[Planéto] Correction de vibrations mécaniques

Instrument modélisé par une convolution 1D



Taille gigantesque des données

Des années d'enregistrements de la mission MARS EXPRESS (2003) donc potentiellement 1 milliard de spectres (de 8192 échantillons) !

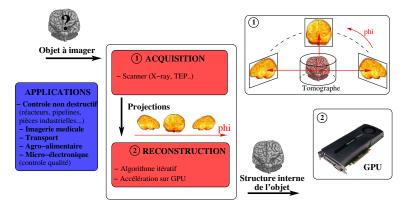
43/78

Iterative algorithm : Mean square + quadratic reg Applications

[Astro] Méthode de reconstruction en astronomie

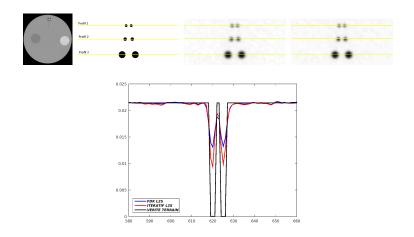
Iterative algorithm : Mean square + quadratic reg Applications

[Tomo3D] Algorithmes de reconstruction tomographique



$1 {\cal K}^3$ volume from 1K projections with $1 {\cal K}^2$ pixels (SAFRAN data set)

Work done in collaboration with SAFRAN (Post-doc Thomas Boulay)



Hardware acceleration of *Hf* and *H^t* operators Projection on GPU Backprojection on GPU

I GPU (Graphic Processing Units) : hardware and software

- 2 Solving (ill-posed) inverse Problems with big dataset
- [Tomo3D] Parallelization on the many cores of each GPU board
 - Hardware acceleration of *Hf* and *H^t* operators
 - Projection on GPU
 - Backprojection on GPU

[] [Tomo3D] Parallelization on the GPU boards of the server

Hardware acceleration of Hf and H^t operators Projection on GPU Backprojection on GPU

Hf and $H^t \delta g$ computation

Matrix multiplication

⊃ reading h_{ij} coefficients in SDRAM memory △volume 2048³ -> matrix H = 1 Exa Bytes !

Hardware acceleration of *Hf* and *H^t* operators Projection on GPU Backprojection on GPU

Hf and $H^t \delta g$ computation

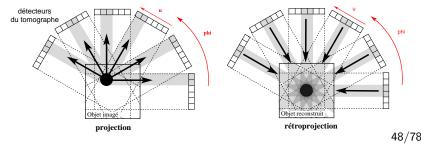
Matrix multiplication

⊃ reading h_{ij} coefficients in SDRAM memory \triangle volume 2048³ − > matrix H = 1 Exa Bytes !

2 Geometric operators

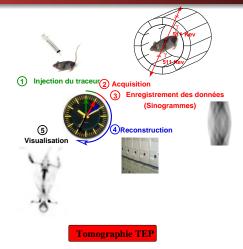
 \supset on line computation of h_{ij} coefficients

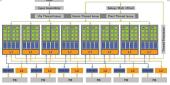
Paire de projection/rétroprojection en tomographie à émission (géométrie parallèle)



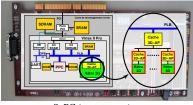
Hardware acceleration of *Hf* and *H^t* operators Projection on GPU Backprojection on GPU

Thèse soutenue en 2008 : "Adéquation Algorithme Architecture pour la reconstruction 3D en imagerie médicale TEP" (Gipsa-lab, Grenoble-INP sous la direction de M. Desvignes et S. Mancini)





GPU (carte graphique)



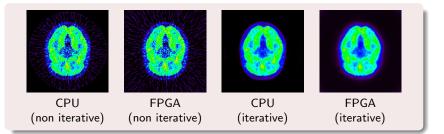
SoPC (prototypage)

Exploration architecturale 49/78

Hardware acceleration of Hf and H^t operators Projection on GPU Backprojection on GPU

50/78

Thesis conclusions



CPU/GPU/FPGA comparaison

	CPU	GPU	FPGA
Time	3 ^{eme} (*4 P4)	1 ^{er} (*50 P4)	2 ^{eme} (*5 P4)
Efficacity	2 ^{eme} (7 C/op)	1 ^{eme} (14 C/Op)	1 ^{er} (2 C/Op)

- GPU is the hardware accelerator the most performant
- FPGA is the hardawre accelerator the most effcient in term of cycles/op (thanks to our cache 3D)

Hardware acceleration of Hf and H^t operators Projection on GPU Backprojection on GPU

GPU quickly adopted by the tomography community

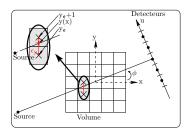
Publications in Fully 3D

- 2007 : 1st Workshop HPIR (High Performance Image Reconstruction)
- 2011 : Keyword Multi GPU first appeared

	2003	2005	2007	2009	2011	2013	2015	2017
Cluster (MPI/Open MP)	2	3	5	6	3	2	1	2
GPU (NVIDIA)			10	14	17	7	10	20
GPU (AMD)				1	1		1	
Cell (IBM)			3					
FPGA			4		1		1	
DSP			2	1				
Intel(Larabee,Xeon phi)				2		2	2	

Hardware acceleration of *Hf* and *H^t* operators **Projection on GPU** Backprojection on GPU

2D projector "regular sampling"

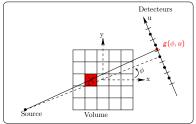


for (un, phi) in Projection do
 for xn = 0 to xn_{max} - 1 do
 // coordinates computation
 yn(xn, un, phi) = ...
 // bi-linear interpolation
 f_{interp} = ...
 // accumulation
 g*(un, phi)+ = f_{interp}
 end for
end for

Hardware acceleration of *Hf* and *H^t* operators Projection on GPU Backprojection on GPU

2D backprojection : algorithm

CALCUL DES COORDONNEES

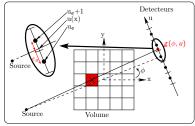


for (xn, yn) in Volume do
 for phi = 0 to phi_{max} - 1 do
 // coordinates computation
 u(phi, xn, yn) = ...
 // accumulation
 f*(xn, yn)+ = g(u, φ)
 end for
end for

Hardware acceleration of *Hf* and *H^t* operators Projection on GPU Backprojection on GPU

2D backprojection : linear interpolation

CALCUL DES COORDONNEES

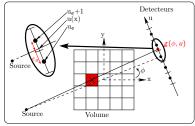


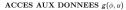
for (xn, yn) in Volume do for phi = 0 to $phi_{max} - 1$ do // coordinates computation $u(phi, xn, yn) = \dots$ // linear interpolation $g_{interp} = (1 - \epsilon_{\mu}) \cdot g(\text{phi}, u_e) +$ $\epsilon_{\mu} \cdot g(\text{phi}, u_e + 1)$ // accumulation $f^*(xn, yn) + = g_{intern}$ end for end for

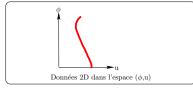
Hardware acceleration of *Hf* and *H^t* operators Projection on GPU Backprojection on GPU

2D backprojection : scattered data access

CALCUL DES COORDONNEES





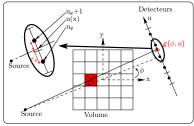


for (xn, yn) in Volume do for phi = 0 to $phi_{max} - 1$ do // coordinates computation $u(phi, xn, yn) = \dots$ // linear Interpolation $g_{interp} = (1 - \epsilon_u) \cdot g(\text{phi}, u_e) +$ $\epsilon_{\mu} \cdot g(\text{phi}, u_e + 1)$ // accumulation $f^*(xn, yn) + = g_{interp}$ end for end for

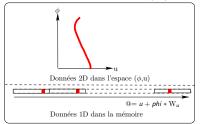
Hardware acceleration of *Hf* and *H^t* operators Projection on GPU Backprojection on GPU

2D backprojection : scattered data access

CALCUL DES COORDONNEES



ACCES AUX DONNEES $g(\phi, u)$

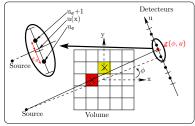


for (xn, yn) in Volume do for phi = 0 to $phi_{max} - 1$ do // coordinates computation $u(phi, xn, yn) = \dots$ // linear interpolation $g_{interp} = (1 - \epsilon_{\mu}) \cdot g(\text{phi}, u_e) +$ $\epsilon_{\mu} \cdot g(\text{phi}, u_e + 1)$ // accumulation $f^*(xn, yn) + = g_{interp}$ end for end for

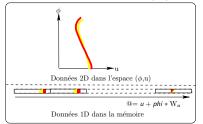
Hardware acceleration of *Hf* and *H^t* operators Projection on GPU Backprojection on GPU

2D backprojection : scattered data access

CALCUL DES COORDONNEES



ACCES AUX DONNEES $g(\phi, u)$

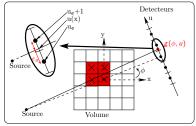


for (xn, yn) in Volume do for phi = 0 to $phi_{max} - 1$ do // coordinates computation $u(phi, xn, yn) = \dots$ // linear interpolation $g_{interp} = (1 - \epsilon_{\mu}) \cdot g(\text{phi}, u_e) +$ $\epsilon_{\mu} \cdot g(\text{phi}, u_e + 1)$ // accumulation $f^*(xn, yn) + = g_{interp}$ end for end for

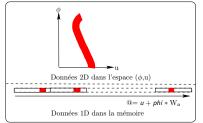
Hardware acceleration of Hf and H^t operators Projection on GPU Backprojection on GPU

2D backprojection by blocks : localized data access

CALCUL DES COORDONNEES



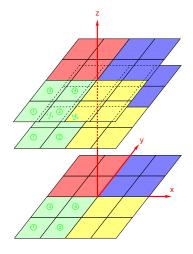
ACCES AUX DONNEES $g(\phi, u)$



for (Bx, By) in Volume do for phi = 0 to $phi_{max} - 1$ do for (xn, yn) in Bloc do // coordinates computation $u(phi, xn, yn) = \dots$ // linear interpolation $g_{interp} = (1 - \epsilon_u) \cdot$ $g(\text{phi}, u_e) + \epsilon_u \cdot g(\text{phi}, u_e + 1)$ // accumulation $f^*(xn, yn) + = g_{interp}$ end for end for end for

Hardware acceleration of *Hf* and *H^t* operators Projection on GPU Backprojection on GPU

3D backprojection parallelization



(a) Sequential computation on processor elementLoop on z

• Loop on ϕ

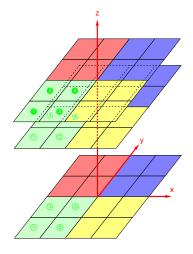
(b) Parallel computation on a block of processors (SIMT)

• Loop on (x,y)

(c) Parallel computation on one card

Hardware acceleration of *Hf* and *H^t* operators Projection on GPU Backprojection on GPU

3D backprojection parallelization



(a) Sequential computation on processor elementLoop on z

• Loop on z

• Loop on ϕ

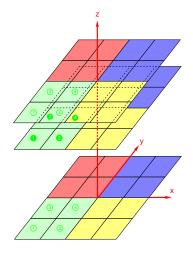
(b) Parallel computation on a block of processors (SIMT)

• Loop on (x,y)

(c) Parallel computation on one card

Hardware acceleration of *Hf* and *H^t* operators Projection on GPU Backprojection on GPU

3D backprojection parallelization



(a) Sequential computation on processor element

Loop on z

• Loop on ϕ

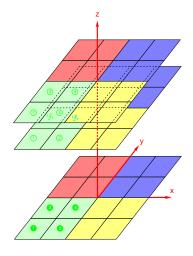
(b) Parallel computation on a block of processors (SIMT)

• Loop on (x,y)

(c) Parallel computation on one card

Hardware acceleration of *Hf* and *H^t* operators Projection on GPU Backprojection on GPU

3D backprojection parallelization



(a) Sequential computation on processor element

Loop on z

• Loop on ϕ

(b) Parallel computation on a block of processors (SIMT)

• Loop on (x,y)

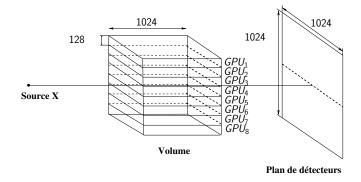
(c) Parallel computation on one card

multi-GPU Parallelization CUDA Streams CUDA Half float Distribution/Centralization of Data

Multi GPUs server (Carri Systems)

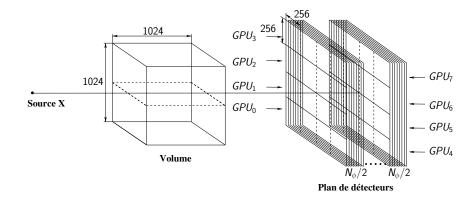
multi-GPU Parallelization CUDA Streams CUDA Half float Distribution/Centralization of Data

3D backprojection multi GPU parallelization



multi-GPU Parallelization CUDA Streams CUDA Half float Distribution/Centralization of Data

3D projection multi-GPU parallelization



multi-GPU Parallelization CUDA Streams CUDA Half float Distribution/Centralization of Data

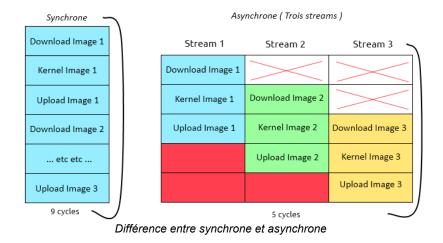
Multi-GPU reconstruction time

Volume $1K^3$ (float) with 1024 projections on 1 to 8 Titans X (3072 cores at 1,075 Ghz)

	1 GPU	2 GPUs	4 GPUs	8 GPUs
Proj (ms)	14416	8183 1,76	4610 3,13	2659 <mark>5,42</mark>
Back (ms)	7604	5181 <mark>1,47</mark>	3027 <mark>2,51</mark>	1929 <mark>3,94</mark>
Conv (ms)	3062	2987 1, <mark>02</mark>	2438 1, <mark>26</mark>	1668 <mark>1,84</mark>

multi-GPU Parallelization CUDA Streams CUDA Half float Distribution/Centralization of Data

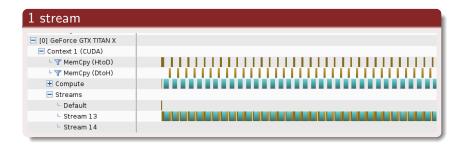
Goal of streams : hide PC/GPU memory transfer



64/78

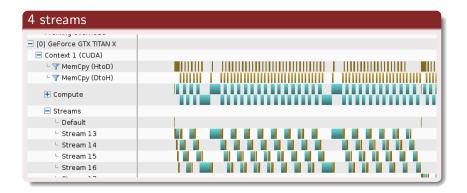
multi-GPU Parallelization CUDA Streams CUDA Half float Distribution/Centralization of Data

CUDA streams for mono GPU backprojection (1024 angles 1024² plan



multi-GPU Parallelization CUDA Streams CUDA Half float Distribution/Centralization of Data

CUDA streams for mono GPU backprojection (1024 angles 1024² plan



multi-GPU Parallelization CUDA Streams CUDA Half float Distribution/Centralization of Data

single GPU time with streams

1K³ Volume (float) with 1024 projections on 1 Titan X (3072 cores at 1,075 Ghz)

	compute	upload	download	w/o stream	w/ streams	Acc.
Proj (ms)	88 %	6 %	6 %	14416	11551	1,25
Rétro (ms)	71,1 %	16,9 %	12,1 %	7604	5358	1,42
Conv (ms)	5 %	28,1 %	66,9 %	3062	3072	0,99

multi-GPU Parallelization CUDA Streams CUDA Half float Distribution/Centralization of Data

multi-GPU time with streams

$1K^3$ volume (float) with 1024 projections on 1 to 8 Titans X (3072 cores at 1,075 Ghz)

	1 GPU	2 GPUs	4 GPUs	8 GPUs
Proj (ms) w/o streams	14416	8183 1,76	4610 <mark>3,13</mark>	2659 5,42
Proj (ms) w/ streams	11551	5783 2,0	3142 3,68	1756 6,58
Back (ms) w/o streams	7604	5181 1,47	3027 2,51	1929 3,94
Back (ms) w/ streams	5358	2609 2,0	1672 3,20	1731 3,10
Conv (ms) w/o streams	3062	2987 1, <mark>02</mark>	2438 1,26	1668 1,84
Conv (ms) w/ streams	3072	2482 1,24	2340 1,31	1674 1,83

Limitations due to PCI express gen2 bandwith (2 to 4 GB/s)

Half float data storage

multi-GPU Parallelization CUDA Streams CUDA Half float Distribution/Centralization of Data

CUDA 7.5 allows half float storage of data on GPU memory

- 16 bits format : sign (1bit), exponant (5bits), mantissa (10bits)
- assembler instructions allow the conversion half/float and float/half in CUDA kernels
- Advantage (i) : reduction of data volume to store on the GPU board
- Advantage (ii) : reduction of memory transfer
- Advantage (iii) : reduction of SDRAM GPU memory access by the GPU cores

multi-GPU Parallelization CUDA Streams CUDA Half float Distribution/Centralization of Data

single GPU time with streams and half-float storage

$1K^3$ volume (float) with 1024 projections on 1 Titan X (3072 cores at 1,075 Ghz)

	float	half float	Acc.
Proj (ms)	11551	8970	1,29
Back (ms)	5358	4252	1,26
Conv (ms)	3072	1608	1,91

Additional acceleration with half float storage for projection and backprojection

-> Reduction of SDRAM GPU memory access time by the GPU cores

multi-GPU Parallelization CUDA Streams CUDA Half float Distribution/Centralization of Data

multi-GPU Time with streams and half-float storage

$1K^3$ volume (float) with 1024 projections on 1 to 8 Titans X (3072)
cores at 1,075 Ghz)

	1 GPU	2 GPUs	4 GPUs	8 GPUs
Proj (ms) f	11551	5783 <mark>2,0</mark>	3142 <mark>3,68</mark>	1756 <mark>6,58</mark>
Proj (ms) hf	8970	4620 1,94	2357 <mark>3,80</mark>	1265 7,09
Back (ms) f	5358	2609 <mark>2,0</mark>	1672 <mark>3,20</mark>	1731 <mark>3,10</mark>
Back (ms) hf	4252	2164 1,96	1229 3,46	876 <mark>4,83</mark>
Conv (ms) f	3072	2482 1,24	2340 1, <mark>3</mark> 1	1674 <mark>1,83</mark>
Conv (ms) hf	1608	1267 1,27	1171 1,37	843 1,91

Limitations due to PCI express gen2 bandwith (2 to 4 GB/s)

multi-GPU Parallelization CUDA Streams CUDA Half float Distribution/Centralization of Data

Data storage during the iterative loop

CPU centralisation

All the data (f^n and f^{n+1} volume, real g and estimated \hat{g} sinograms...) could not stay on the GPU board (true from $1K^3$) volumes)

Because of the cone beam geometry, data could not easily cut in independant block of data

- > Data need to be backed up on the CPU at least one time after each iteration

(single)GPU centralization

All the data (f^n and f^{n+1} volume, real g and estimated \hat{g} sinograms...) could stay on the GPU board (true up to 512³ volumes)

- > All the iterative loop could be done on the GPU

(multi)GPU centralisation

All the data (n and n+1 volume, real and estimate sinograms...) could be distributed on the diffrenets GPU boards (true up to $2K^3$ volumes)

-> All the iterative loop could be done without data storage on the CPU

CPU centralization

multi-GPU Parallelization CUDA Streams CUDA Half float Distribution/Centralization of Data

Current strategy : result of each operator (proj, back, conv) is backed up on the CPU

- Advantage : operators (proj, back, conv) are independants (usefull for utilization with Matlab and mex function)
- Disadvantage : several synchronizations CPU/GPU and memory transfer time cost

Solutions to avoid these multiples synchronizations and its impact on reconstruction time

- Use of only one synchronization per iteration by merging operators working on subblock of data (need of a reduction step)
- Hide memory transfer time thanks to streams and half float data storage.

multi-GPU Parallelization CUDA Streams CUDA Half float Distribution/Centralization of Data

Reconstruction time (per iteration with computation of the optimized gradient step) with CPU centralization

$1K^3$ volume (float) with 1024 projections on Titans X (3072 cores at 1,075 Ghz)

	proj (*2)	retro	conv(*3)	autres	total	Acc.
1 GPU	49,6 %	20,2 %	30,1 %	28,1%	47,1 s	
2 GPUs	36,6 %	7,5%	14,9 %	40,9%	32,4 s	1,45
4 GPUs	23,6 %	7,5 %	21,6 %	47,2 %	27,9 s	1,69
8 GPUs	15,9 %	6,6%	21,6%	55,9 %	23,6 s	1,99

$2K^3$ volume (float) with 2048 projections on Titans X (3072 cores at 1,075 Ghz)

		proj (*2)	retro	conv(*3)	autres	total	Acc.
Γ	4 GPUs	36,27 %	20,65%	10,38 %	32,69%	5,4 mn	
Γ	8 GPUs	26,38 %	13,31 %	15,22 %	45,09 %	3,8 mn	1,4

multi-GPU Parallelization CUDA Streams CUDA Half float Distribution/Centralization of Data

Reconstruction time (per iteration with computation of the optimized gradient step) with CPU centralization

Limitations of this CPU centralization

-> The "little" operations (norm L2, substraction...) are becoming preponderants.... Solutions :

- Parallelization on the CPU cores (the minimum to do....)
- Merge the operators (break the frontier between each operators)
- Use of half float storage to get a GPU centralization (code 100% GPU)

multi-GPU Parallelization CUDA Streams CUDA Half float Distribution/Centralization of Data

Reconstruction time (per iteration with computation of the optimized gradient step) with **GPU centralization**

$1 {\cal K}^3$ volume (float) with 1024 projections on one Titan X (3072 cores at 1,075 GH								
		proj (*2)	back	conv(*3)	others	total	Acc.	
	CPU cer	tralization						
	1 GPU	49,7 %	9,8 %	12,7 %	27,0 %	43,9 s		
	GPU cer	tralization a	nd half flo	at				
	1 GPU 78,3 % 18,3 % 2,2 % 1,2 % 21,9 s 2							

multi-GPU Parallelization CUDA Streams CUDA Half float Distribution/Centralization of Data

Conclusions

Towards an efficient computation on GPU for each operator

- Local and spatial memory locality
- Threads/Blocks "optimal" definition (thread parallelism)
- Unrolling loop (instruction parallelism)
- Incremetal computation

Use of streams to hide CPU/GPU memory transfer time

Half-float data storage on GPU

- Reduction of CPU/GPU memory transfer
- Reduction of SDRAM GPU/coeurs GPU memory transfer
- Reduction of storage on SDRAM GPU

 $->{\rm A}$ significant accelaration factor (1.2/1.3) on a single GPU and a more efficient multi-GPU parallelization

-> A 100 % GPU code for $1K^3$ volume is becoming possible

iterative reconstruction of $2K^3$ volume

multi-GPU Parallelization CUDA Streams CUDA Half float Distribution/Centralization of Data

Perspective for SKA project

Short term perspectives

- Acceleration of the convolution (H and Ht)
- Multi-GPU parallelization with CPU Centralisation of data

Median/long term perspectives

- Multi-GPU parallelization with multi-GPU distribution of data
- Use of FPGA Architecture with HLS (High Level Synthesis) tools