

Quiet-Sun magnetic fields

Marianne Faurobert & Gilbert Ricort Lagrange Laboratory

Outline

The Sun in Astrophysics

agnetism of the quiet Sun.

Spatial distribution of the magnetic flux at small scales Comparison 2007/2013 (solar minimum/ maximum)

The Sun in Astrophysics

- The Sun as a star
- Best observed star : a test bed for stellar physics
- The Sun as a laboratory for plasma physics:
- Dynamo mechanisms
- Plasma turbulence
- Magnetic reconnection and particule acceleration
- The Sun as our star
- Solar-terrestrial relations: space weather, climate change

Some key questions in solar physics

- How is the solar corona heated?
- How is the solar wind accelerated?
- How is the solar magnetic field generated inside the Sun (solar activity cycle)?
- How are solar flares and coronal mass ejections triggered?
- Variations of the solar irradiance?

The magnetic field plays a crucial role in all these phenomena

Magneto-Hydrodynamics of the Sun

 Coupling between the plasma motions and the evolution of the magnetic field

<u><u><u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> </u></u>	=	$\nabla \mathbf{x} (\mathbf{v} \times \mathbf{B}) + \eta \nabla^2 \mathbf{B}$	Induction Equation
$\frac{\mathbf{D}\rho}{\mathbf{D}t} + \rho \nabla \mathbf{V}$	=	0	Mass Conservation
$\rho \frac{D v}{D t}$	=	-∇ p + j x B + ρ g +	Viscous Terms Motion
$\frac{\rho^{\gamma}}{\gamma-1} \frac{D}{Dt} \left(\frac{p}{\rho^{\gamma}}\right)$	=	$\nabla \cdot \left(\kappa_{\parallel} \nabla T \right) = \rho^2 Q(T)$	+ Η (s,t, Β, ρ,Τ)
р	=	<u> </u>	Energy
∇. B	=	0 Gauss' Law	

Induction equation

• Two terms: advection (I) + diffusion (II) $\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{v} \times \mathbf{B}) + \eta \nabla^2 \mathbf{B}$

$$\frac{I}{II} = \frac{L_0 v_0}{\eta} = R_m$$

Magnetic Reynolds number

Typical value in the photosphere

$$\eta = 1 \text{ m}^2 / s$$
, $L_0 = 10^5 \text{ m}$, $v_0 = 10^3 \text{ m/s} \rightarrow R_m = 10^8$

• I >> II --> the magnetic field is advected by the plasma motions: it is "frozen-in"

Diffusion time

$$t_d = L_0^2 / \eta$$

For a typical sunspot : $(\eta = 1 \text{ m}^2/\text{s}, L_0 = 10^6 \text{ m}), t_d = 10^{12} \text{ sec}$

In the solar photosphere *advection time= diffusion time* for $l \approx 15 m$

This means that the magnetic field can form coherent structures on very small spatial scales that we are far from resolving with our instruments.

How is the magnetic field structured?

Circular polarization (Zeeman effect) in Fel 630.2 nm line gives the longitudinal **magnetic flux density** over the pixel in the photosphere The dimensions of both figures are 110 Mm and the pixel size is 110 km. (Hinode satellite)

Histogram of feature frequency vs. magnetic flux.

No characteristic scale:
power-law distribution over
more than 5 decades in flux

- 3 orders of magnitude more magnetic flux in the quiet sun than in active regions

Parnell et al., 2009, ApJ

Quiet Sun dynamics Photospheric granulation

3D MHD simulations showing small-scale dynamo in the quiet sun

Magnetism of the quiet sun (Small-scale/global dynamo)

- Very difficult to observe because:
- The magnetic structures are not resolved (mixed polarities at small scales)
- The polarization signals are weak (typically 1% of the continuum intensity or less)
- → Instrumental requirements: High angular resolution + High polarimetric sensitivity
- →New solar telescope: DKIST, 4m-miror with adaptive optics (under construction in Hawaï). In Europe: EST (in project for the Canary Islands)
- Space: Hinode (resolution 0.3"- 0.05"), Sunrise (0.15")

Small-scale distribution of the magnetic flux in the internetwork.

• Observational study with Hinode/SOT spectro-polarimeter

Unsigned magnetic flux measurement

Weak field limit:

$$V(\lambda) = -4.39 * 10^{-13} \lambda^2 g B_{//} \frac{dI}{d\lambda}$$

Line integration $\left|\int_{-\Delta\lambda}^{0} V(\lambda)d\lambda - \int_{0}^{\Delta\lambda} V(\lambda)d\lambda\right| = 2 * 4.39 * 10^{-13} \lambda^2 g B_{//}(I_c - I_0)$

Gives the unsigned magnetic flux density in the pixel

Internetwork magnetic flux Comparison 2007/2013

10.2" 98 selected regions between -70° and +70°

Deconvolution of the maps

The maps are affected by the convolution with the instrument PSF: - Diffraction by the pupil of the telescope (50 cm- miror and its central obscuration) + aliasing due to undersampling + defocus

MTF with undersampling by the camera: the MTF does not reach 0 at the cut-off frequency of the telescope

Before deconvolution

After deconvolution

Fourier power spectra

Comparison 2007/2013

minimum/maximum

Change of both the shape and amplitude of the power spectrum between solar minimum and maximum.

- Two broad peaks at maximum, only one at minimum
- At disk center: more power at solar maximum but close to the pole: more power at solar minimum.

Conclusion

- The spatial distibution of the magnetic flux in the internetwork of the quiet Sun varies with the solar cycle.
 - At solar maximum: two maxima in the Fourier power spectrum:
 - at characteristic scales of 1300 km (granulation) and 700 km.
 - At solar minimum: the scale at 1300 km is not detected.
 - The magnetic structures at 700 km could be due to a small-scale dynamo in the quiet Sun, operating independently of the global dynamo.
- The power of the fluctuations seen at the equator increases at solar maximum but close to the pole it decreases: could be due to the decay of large-scale structures of the global dynamo advected on granular scales and transported toward the poles by the meridian ciculation.

Going Further

- The small scale dynamo is probably operating through the whole convection zone and interacting with the cyclic dynamo (not considered in the models)
- To understand the physical mechanisms of the coupling we need to determine the 3 components of the magnetic field at small scales (not only the flux density): DKIST (2020), EST???.

Thank you!