# Improving Milky Way Cepheid distance estimations with high-resolution spectroscopy



ANR UnlockCepheids : Pierre Kervella, Antoine Mérand, Nicolas Nardetto, Alexandre Gallenne, Eric Lagadec, Vincent Hocdé, Boris Trahin, Behnam Javanmardi & Louise Breuval









#### Context

- The (extra)-galactic distance scale in cosmology
- Cepheid variables as distance indicators

Contribution of Cepheid high-resolution spectroscopy

- Radial velocities
- Effective temperatures
- Line profile modeling



#### The Hubble constant and expanding universe



Credit: NASA/WMAP



(Hubble, 1929)

Hubble-Lemaître law:  $\mathbf{v} = \mathbf{H}_0.\mathbf{d}$ 

 $H_0 \approx 70-75 \ (km/s)/Mpc$ 



#### The cosmological distance scale



Distance to the Sun (pc)





(Freedman 2017)



#### Classical Cepheid variables

Radially pulsating stars (1 < P < 100 days)

Bright (~ $10^5 L_{\odot}$ ) supergiants (type I)





Credit: J. Breitfelder, PhD thesis, 2015, tel-01238712

Radial velocities

Effective temperatures

Conclusions

### Cepheids as standard candles : the Period-Luminosity (P-L) relation(s)

 $M_{_i} = a_{_i} \log(P) + b_{_i}$ 

5-10% uncertainty: Metallicity ≠ relations in photometric bands Interstellar reddening Contamination (binaries, circumstellar envelopes)

Necessity of independent distance calibration





Gaia DR2:

 $\rightarrow$  Systematics (parallax offsets)

 $\rightarrow$  Astrometric bias (Cepheid variability) "Too uncertain" so far (*Ripepi+ 2019*)





#### The parallax-of-pulsation (PoP) method







Credit : ESO

d [pc] = 9.305  $\Delta R [R_{\odot}] / \Delta \theta$  [mas]



Asymmetric line profile !

```
\rightarrow d/p (2-7% uncertainty)
```



#### SPIPS: a global implementation of the PoP method



Radial velocities

Effective temperatures

 $\square$ 

#### High-resolution spectroscopy of Milky Way Cepheids

#### PoP method issues

1/ Cepheid  $v_{\rm rad}$  consistency: a symmetric lines, velocity gradient

2/ decreased PoP robustness if no diameters (faraway Cepheids)

3/ p-factor limitation  $\rightarrow$  v<sub>puls</sub> estimation ?







Velocity gradient (Nardetto+ 2007)



#### Sample



► SOPHIE/OHP HARPS-North, HERMES (La Palma) VLT/UVES HARPS, CORALIE, FEROS (La Silla)

64 Milky Way Cepheids Seven spectrographs

 $> 3900~{\rm spectra}$ 

Pulsation velocities

 $\square$ 

#### Input spectra

Same pre-defined  $\lambda$  ranges Same normalisation  $\rightarrow$  Maximize consistency



15

Radial velocities Effective temperatures

Pulsation velocities

Conclusions

 $\bigcirc$ 

## Cross-Correlation Functions (CCFs)

CCF  $\approx$  mean line profile

 $\rightarrow$  Higher S/N than single lines

 $\rightarrow$  Quick

 $\rightarrow$  Common



16



#### Tailored correlation templates



#### Radial velocities





-30 **-**

0.0

0.4

0.6

φ

0.2



FF AqlP = 4.47 days

0.8

0.8

1.0

1.0











#### Results: template box width



Radial velocities Effective temperatures

Pulsation velocities

Conclusions

 $\square$ 

#### Results: line-depth templates

Radial velocities vs. line depth:

 $\begin{array}{l} \rightarrow \mbox{ clear } v_{\rm rad} \mbox{ offsets} \\ \rightarrow \mbox{ No clear } v_{\rm rad} \mbox{ gradient} \\ \rightarrow \mbox{ deeper lines are more robust} \end{array}$ 



# How to get robust Cepheid v<sub>rad</sub>

Minimize CCF asymmetry !

- $\rightarrow$  Centroid  $v_{rad}$
- $\rightarrow$  Stronger/deeper lines
- $\rightarrow$  Wider template boxes

Astronomy & Astrophysics manuscript no. aa35622-19 September 7, 2019 © S. Borgniet et al. 2019

# Consistent radial velocities of classical Cepheids from the cross-correlation technique\*,\*\*

- S. Borgniet<sup>1</sup>, P. Kervella<sup>1</sup>, N. Nardetto<sup>2</sup>, A. Gallenne<sup>2,3</sup>, A. Mérand<sup>4</sup>, R. I. Anderson<sup>4</sup>, J. Aufdenberg<sup>5</sup>, L. Breuval<sup>1</sup>, W. Gieren<sup>6,7</sup>, V. Hocdé<sup>2</sup>, B. Javanmardi<sup>1</sup>, E. Lagadec<sup>2</sup>, G. Pietrzyński<sup>6,8</sup>, and B. Trahin<sup>1</sup>
  - <sup>1</sup> LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, 5 Place Jules Janssen, 92195 Meudon, France
  - e-mail: Simon.Borgniet@obspm.fr
  - <sup>2</sup> Université Côte d'Azur, OCA, CNRS, Lagrange, Parc Valrose, Bât. Fizeau, 06108 Nice Cedex 02, France
  - <sup>3</sup> European Southern Observatory, Alonso de Córdova 3107, Casilla 19001, Santiago, Chile
  - <sup>4</sup> European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching, Germany
  - <sup>5</sup> Embry-Riddle Aeronautical University, Physical Sciences Department, 600 S Clyde Morris Boulevard, Daytona Beach, FL 32114, USA
  - <sup>6</sup> Departamento de Astronomía, Universidad de Concepción, Casilla 160-C, Concepción, Chile
  - <sup>7</sup> Millenium Institute of Astrophysics, Av. Vicuna Mackenna 4860, Santiago, Chile
  - <sup>8</sup> Nicolaus Copernicus Astronomical Centre, Polish Academy of Sciences, Bartycka 18, 00-716 Warszawa, Poland

Received 4 April 2019 / Accepted 5 August 2019

Accepted by A&A, Aug. 2019

Radial velocities

Effective temperatures Pulsation velocities

 $\square$ 

#### Cepheid spectroscopic effective temperatures



6090.21 Å VI to λ 6091.92 Å SiI (calibration No.10 from Table 1), is shown as a function of effective temperature.

Effective temperatures Pulsation velocities

 $\square$ 

### Input for the PoP method / SPIPS



# $T_{eff}$ impact on SPIPS models

# 113 line pairs appropriate for LDR (from literature) $\rightarrow$ Phased $\rm T_{eff}\, curves$



27

Effective temperatures Pulsation velocities

 $\square$ 

28

#### Alternative to angular diameters

For distant Cepheids (no interferometric  $\theta$ ):

LDR  $T_{eff}$  in SPIPS  $\rightarrow$  breaks degeneracy between modeled  $T_{eff}$  and interstellar reddening





#### A new approach to the p-factor issue



#### Synthetic Cepheid spectra

PHOENIX atmosphere models Solar metallicity  $\log g \ 0.6 - 2.4$  $T_{eff}$  4,000 – 7,000 K  $\mathrm{v}_{\mathrm{mic}}=2~\mathrm{km/s}$ 





#### Pulsation modeling

(Vasilyev + 2018)





$$v_{puls}$$
 -50 – 50 km/s









#### Test on $\delta$ Cephei (Cepheid prototype)









strong-, all-lines

#### Conclusions & perspectives

Key role of **high-resolution spectroscopy** 

- $\rightarrow$  Milky Way Cepheid distances
- $\rightarrow$  Period-Luminosity calibration





Gaia RVS typical spectrum (Katz+ 2018)

# Thank you !

