©

UNIVERSITE CŌTE D'AZUR

Online Graph Topology Inference with Kernels

Mircea Moscu, Ricardo Borsoi, Cédric Richard

Lagrange Seminar

June $30^{\text {th }} 2020$

Structure

(9) Introduction
(2) Problem definition and optimization
(3) Experiment \& Results

4 Concluding remarks

Motivation

- data are abundant and diverse, and are often supported by irregular domains that can be naturally modeled as graphs
- most graph signal processing algorithms assume prior knowledge of the graph structure
- examples where topology needs to be inferred from data include brain networks, gene regulation systems [1] or social and economical interactions [2]

LNYERSITECOTE DAZUR Ȯ:

Figure 1: Potential brain network. (Sapien Labs)

Definitions and notations

Definitions

- graph $\mathcal{G}=(\mathcal{N}, \mathcal{E})$
- \mathcal{N} set of $N+1$ nodes
- \mathcal{E} set of edges; if m and n are linked, $(m, n) \in \mathcal{E}$
- adjacency matrix $\boldsymbol{A}[3,4]$
- $(N+1) \times(N+1)$ matrix
- $a_{n m}$ is 0 if $(m, n) \notin \mathcal{E}$, 1 otherwise
- encodes the underlying graph connectivity
- signal $\boldsymbol{y}(i) \triangleq\left[y_{1}(i), \ldots, y_{N+1}(i)\right]^{\top}, i \in \mathbb{N}_{+}$

Background

Goal

Estimating the graph topology encoded in a (possibly directed) adjacency matrix \boldsymbol{A} from online nodal measurements $\boldsymbol{y}(i)=\left[y_{1}(i), \ldots, y_{N+1}(i)\right]^{\top}$, $i \in \mathbb{N}_{+}$acquired over \mathcal{G}

- The dynamic graph signal $\boldsymbol{y}(i)$ can denote, e.g., the electrical activity of different brain-regions [5, 6], or the voltage angle per bus [7]
- The signal at each node $y_{n}(i)$ influences and is influenced by the signals at the other nodes $\left(y_{m}(i), m \in \mathcal{N} \backslash\{n\}\right)$

Additive signal model

Nonlinear interactions are being reported in many applications (e.g., in brain connectivity [8, 9])

Recent methods have considered models of the form [10]:

$$
\begin{equation*}
y_{n}(i)=\sum_{m \in \mathcal{N} \backslash\{n\}} a_{n m} f_{m}\left(y_{m}(i)\right)+v_{n}(i) \tag{1}
\end{equation*}
$$

where

- $a_{n m}$ is the $(n, m)^{\mathrm{th}}$ entry of the graph adjacency matrix \boldsymbol{A}
- f_{m} is a nonlinear function
- $v_{n}(i)$ represents innovation noise

Optimization problem in the input space

Using model (1), the topology estimation problem can formulated using all available measurements ($y_{n}(\ell)$ for $\ell \leq i$) as:

$$
\begin{align*}
& \underset{a_{n}, f_{1}, \ldots, f_{N}}{\operatorname{argmin}} \frac{1}{2 i} \sum_{\ell=1}^{i}\left\|y_{n}(\ell)-\sum_{m \in \mathcal{N} \backslash\{n\}} a_{n m} f_{m}\left(y_{m}(\ell)\right)\right\|^{2}+\vartheta\left(\boldsymbol{a}_{n}\right) \\
& \text { subject to } a_{n m} \in\{0,1\} \tag{2}
\end{align*}
$$

where \boldsymbol{a}_{n} is the $n^{\text {th }}$ row of \boldsymbol{A}, and function ϑ is a sparsity promoting regularization (e.g., ℓ_{0} or ℓ_{1} (semi)-norm).

However, problem (2) is difficult to solve: it is non-convex, and has infinite dimensional decision variables f_{m}.

Optimization problem in the RKHS

 LINVERSTECCOTTE DAZUR :To obtain an efficient algorithm without sacrificing representation power, we:

- denote $\phi_{n m}=a_{n m} f_{m}$, which allows us to incorporate the binary variable $a_{n m}$ and turn (2) into a problem that is quadratic in $\phi_{n m}$.
- constrain $\phi_{n m}$, for $m \in \mathcal{N} \backslash\{n\}$, to a Reproducing Kernel Hilbert Space (RKHS) \mathcal{H}_{κ} associated with a positive definite reproducing kernel $\kappa(\cdot, \cdot)$.
- Thus, $a_{n m}=0$ becomes equivalent to $\left\|\phi_{n m}\right\|_{\mathcal{H}_{\kappa}}=0$.

The optimization problem becomes:

$$
\begin{equation*}
\underset{\substack{\phi_{n m} \in \mathcal{H}_{\kappa} \\ m=1, \ldots, N}}{\operatorname{argmin}} \frac{1}{2 i} \sum_{\ell=1}^{i}\left\|y_{n}(\ell)-\sum_{m \in \mathcal{N} \backslash\{n\}} \phi_{n m}\left(y_{m}(\ell)\right)\right\|^{2}+\sum_{m \in \mathcal{N} \backslash\{n\}} \psi_{\mathcal{H}_{\kappa}}\left(\left\|\phi_{n m}\right\|_{\mathcal{H}_{\kappa}}\right), \tag{3}
\end{equation*}
$$

where $\psi_{\mathcal{H}_{\kappa}}: \mathbb{R} \rightarrow[0, \infty[$ is a non-decreasing function.

The Kernel Trick

M. Moscu, R. Borsoi, C. Richard

The Kernel Trick

UNIVERSITÉ

COTTE D'AZUR

\because
CnIs
(d) OBSERVATIRE (dNYERSTE COTE D'AZUR :

$$
\begin{gathered}
\text { Mapping } \varphi: \mathbb{R}^{d_{1}} \rightarrow \mathbb{R}^{d_{2}}, d_{2} \gg d_{1}, \boldsymbol{x} \in \mathbb{R}^{d_{1}} \mapsto \varphi(\boldsymbol{x}) \in \mathbb{R}^{d_{2}} \\
\Longrightarrow \forall f(\cdot) \in \mathbb{R}^{d_{2}}, f(\boldsymbol{x})=\langle f(\cdot), \kappa(\cdot, \boldsymbol{x})\rangle_{\mathbb{R}^{d_{2}},} \text { with } \kappa(\cdot, \boldsymbol{x})=\varphi(\boldsymbol{x}) \\
\Longrightarrow \\
\Longrightarrow \kappa\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)=\left\langle\varphi\left(\boldsymbol{x}_{1}\right), \varphi\left(\boldsymbol{x}_{2}\right)\right\rangle_{\mathbb{R}^{d_{2}}} \\
\text { Examples: } \kappa\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)=\exp \left(-\gamma\left\|\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right\|^{2}\right), \kappa\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)=\tanh \left(a \boldsymbol{x}_{1}^{\top} \boldsymbol{x}_{2}+b\right)
\end{gathered}
$$

Finite dimensional representation

The representer theorem [11] implies that the solution to (3) admits a finite-dimensional representation:

$$
\begin{equation*}
\phi_{n m}^{*}(\cdot)=\sum_{p=1}^{i} \alpha_{n m p} \kappa_{m}\left(\cdot, y_{m}(p)\right), \quad m=1, \ldots, N, \quad \alpha_{n m p} \in \mathbb{R} \tag{4}
\end{equation*}
$$

However, the number of coefficients $\left\{\alpha_{n m p}\right\}$ increases with i, which is a problem for online processing.

Sparse kernel dictionaries

A solution to this problem is to consider sparse kernel dictionaries \mathcal{D}_{m} :

Kernel dictionary and sparsification rule

- each node m in the network creates, updates, and stores a dictionary of kernel functions, $\mathcal{D}_{m}=\left\{\kappa_{m}\left(\cdot, y_{m}\left(\omega_{j}\right)\right): \omega_{j} \in \mathcal{I}_{m}^{i} \subset\{1, \ldots, i-1\}\right\}$
- a candidate kernel function $\kappa_{m}\left(\cdot, y_{m}(i)\right)$ is added in \mathcal{D}_{m} if the following sparsification condition holds [12]:

$$
\begin{equation*}
\max _{\omega_{j} \in \mathcal{I}_{m}^{i}}\left|\kappa_{m}\left(y_{m}(i), y_{m}\left(\omega_{j}\right)\right)\right| \leq \xi_{m}, \tag{5}
\end{equation*}
$$

where $\xi_{m} \in[0,1$ [determines the level of sparsity and coherence [12]

- the size of the dictionary remains bounded as $i \rightarrow \infty$

Introducing sparsity

Since $\phi_{n m}$ encodes the interaction from node m to node n in model (1), promoting sparsity over $\boldsymbol{A} \Leftrightarrow$ promoting sparsity over the functions $\phi_{n m}$.

The coefficient-based representation (4) means that sparsity of groups of variables $\left\{\alpha_{n m \omega_{j}}\right\}_{\omega_{j} \in \mathcal{I}_{m}^{i}}, m \in \mathcal{N} \backslash\{n\}$, can be promoted by using a block-sparse regularization [13]:

$$
\begin{equation*}
\boldsymbol{\alpha}_{n}^{*}=\underset{\boldsymbol{\alpha}_{n}}{\operatorname{argmin}} \frac{1}{2}\left\|y_{n}(i)-\boldsymbol{\alpha}_{n}^{\top} \tilde{\boldsymbol{k}}(i)\right\|^{2}+\eta_{n} \sum_{m \in \mathcal{N} \backslash\{n\}}\left\|\tilde{\boldsymbol{\alpha}}_{n m}\right\|_{2}, \tag{6}
\end{equation*}
$$

where we considered the instantaneous MSE estimate (measured only at instant i), with block vectors $\boldsymbol{\alpha}_{n}$ and $\tilde{\boldsymbol{k}}(i)$ are defined as:

$$
\begin{align*}
\tilde{\boldsymbol{k}}(i) & =\left[\boldsymbol{k}_{1}^{\top}(i), \ldots, \boldsymbol{k}_{N}^{\top}(i)\right]^{\top}, \quad \boldsymbol{k}_{m}(i)=\operatorname{col}\left\{k_{m}\left(y_{m}(i), y_{m}\left(\omega_{j}\right)\right)\right\}_{\omega_{j} \in \mathcal{I}_{m}^{i}} \\
\boldsymbol{\alpha}_{n} & =\left[\tilde{\boldsymbol{\alpha}}_{n 1}^{\top}, \ldots, \tilde{\boldsymbol{\alpha}}_{n N}^{\top}\right]^{\top}, \quad \tilde{\boldsymbol{\alpha}}_{n m}=\operatorname{col}\left\{\alpha_{n m \omega_{j}}\right\}_{\omega_{j} \in \mathcal{I}_{m}^{i}} \tag{7}
\end{align*}
$$

Algorithm update

Using the subgradient descent algorithm [14] leads to the update:

Update rule

$$
\begin{equation*}
\hat{\boldsymbol{\alpha}}_{n}(i+1)=\hat{\boldsymbol{\alpha}}_{n}(i)+\mu_{n} \tilde{\boldsymbol{k}}(i)\left[y_{n}(i)-\tilde{\boldsymbol{k}}^{\top}(i) \hat{\boldsymbol{\alpha}}_{n}(i)\right]-\mu_{n} \eta_{n} \boldsymbol{\Gamma}_{n}(i) . \tag{8}
\end{equation*}
$$

with $\boldsymbol{\Gamma}_{n}(i)=\left[\boldsymbol{\Gamma}_{n 1}^{\top}(i), \ldots, \boldsymbol{\Gamma}_{n N}^{\top}(i)\right]^{\top}[14]$, where each block $\boldsymbol{\Gamma}_{n m}(i)$ is:

$$
\boldsymbol{\Gamma}_{n m}(i)= \begin{cases}\frac{\tilde{\boldsymbol{\alpha}}_{n m}(i)}{\left\|\tilde{\boldsymbol{\alpha}}_{m n}(i)\right\|_{2}} & \text { if }\left\|\tilde{\boldsymbol{\alpha}}_{m n}(i)\right\|_{2} \neq 0 \tag{9}\\ \mathbf{0} & \text { if }\left\|\tilde{\boldsymbol{\alpha}}_{m n}(i)\right\|_{2}=0\end{cases}
$$

Edge identification

Set $\hat{a}_{n m}(i)$ to 1 if $\left\|\hat{\boldsymbol{\alpha}}_{n m}(i)\right\| \geq \tau_{n}$, to 0 otherwise

Epilepsy dataset setting

The used data come from a 39 -year-old female subject suffering from intractable epilepsy [15]. The data-set contains 8 instances of electrocorticography (ECoG) time series, each instance representing one seizure and contains voltage measurements from 76 different regions on and inside the brain, during:

- the 10 seconds before the epilepsy seizure (preictal interval)
- the first 10 seconds during the seizure (ictal interval)

Epilepsy dataset results

UNIVERSITÉ

CÖTE D'AZUR

Figure 2: Estimated adjacency matrices (left) and summed in- and out-degrees for the estimated graphs (right). The larger the radius corresponding to node n, the larger the summed degree of node n.

Conclusion and perspectives

Conclusion

- online adaptive graph topology algorithm
- the use of kernels allows for inferring nonlinear relationships
- kernel dictionaries mitigate the increasing number of data points inherently present in an online setting
- consistent results on real data

Perspectives

- the use of multi-kernels
- the use of other sparsity-inducing techniques

References I

 LNVERSIECÓTE DAZUR 喑[1] The International HapMap Consortium.
A second generation human haplotype map of over 3.1 million SNPs.
Nature, 449:851 EP -, 102007.
[2] U.S. Bureau of Economic Analysis.
The use of commodities by industries.
https://apps.bea.gov/iTable/iTable.cfm?reqid=52\&step=3\&isuri=1.
Accessed: 07/05/2019.
[3] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst.
The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains.
IEEE Signal Processing Magazine, 30(3):83-98, 2013.
[4] N. Biggs.
Algebraic Graph Theory.
Cambridge University Press, 1993.
[5] Mikail Rubinov and Olaf Sporns.
Complex network measures of brain connectivity: uses and interpretations.
Neuroimage, 52(3):1059-1069, 2010.
[6] Yanning Shen, Brian Baingana, and Georgios B Giannakis.
Nonlinear structural vector autoregressive models for inferring effective brain network connectivity. arXiv preprint arXiv:1610.06551, 2016.
[7] L. Zhang, G. Wang, and G. B. Giannakis.
Going beyond linear dependencies to unveil connectivity of meshed grids.
In Proc. IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), pages 1-5, Curaçao, Dutch Antilles, 2017.
[8] W. J. Freeman.
EEG analysis gives model of neuronal template-matching mechanism for sensory search with olfactory bulb.
Biological cybernetics, 35(4):221-234, 1979.

References II

 LNVERSTE COOTED'AZUR 落[9] J. A. de Zwart, P. van Gelderen, J. M. Jansma, M. Fukunaga, M. Bianciardi, and J. H. Duyn. Hemodynamic nonlinearities affect BOLD fMRI response timing and amplitude. Neuroimage, 47(4):1649-1658, 2009.
[10] Yanning Shen, Brian Baingana, and Georgios B Giannakis. Kernel-based structural equation models for topology identification of directed networks. IEEE Transactions on Signal Processing, 65(10):2503-2516, 2017.
[11] B. Schölkopf, R. Herbrich, and A. J. Smola. A generalized representer theorem.
In International conference on computational learning theory, pages 416-426. Springer, 2001.
[12] C. Richard, J.-C. M. Bermudez, and P. Honeine.
Online prediction of time series data with kernels.
IEEE Transactions on Signal Processing, 57(3):1058-1067, 2009.
[13] M. Yuan and Y. Lin.
Model selection and estimation in regression with grouped variables.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(1):49-67, 2006.
[14] D. Jin, J. Chen, C. Richard, and J. Chen.
Adaptive parameters adjustement for group reweighted zero-attracting LMS.
In Acoustics, Speech and Signal Processing (ICASSP), Proc. 2018 IEEE International Conference on, 2017.
[15] M. Kramer, E. D. Kolaczyk, and H. Kirsch.
Emergent network topology at seizure onset in humans.
Epilepsy research, 79:173-86, 2008.
[16] J. M. Ford, V. A. Palzes, B. J. Roach, and D. H. Mathalon.
Did I do that? Abnormal predictive processes in schizophrenia when button pressing to deliver a tone.
Schizophrenia bulletin, 40(4):804-812, 2013.

Schizophrenia dataset setting

We used electroencephalography (EEG) measurements [16] taken from a group of six subjects, half of which are healthy and half suffer from schizophrenia. A simple button-pressing task is set up, in three separate settings where subjects either:
(1) Task 1: pressed the button and a tone was immediately played
(2) Task 2: listened to the tone without the button press
(c) Task 3: pressed the button and the tone was not played

UNIVERSITÉ CÔTE D'AZUR

(c) OBSERVATOIRE LINVERGITECÓTE DAZUR :

Schizophrenia dataset results

(a) Task 1

(b) Task 2

Figure 3: Estimated topologies per task, averaged per group.

