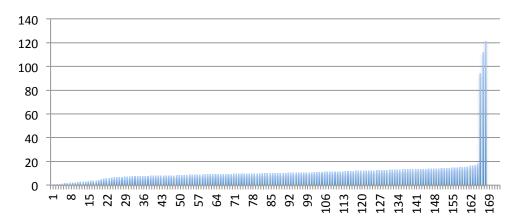


ACTIVITÉ STELLAIRE ET TRANSITS VUS PAR L'INTERFÉROMÉTRIE

Roxanne LIGI
Doctorante sous la direction de Denis MOURARD
Laboratoire Lagrange, OCA.

PLAN

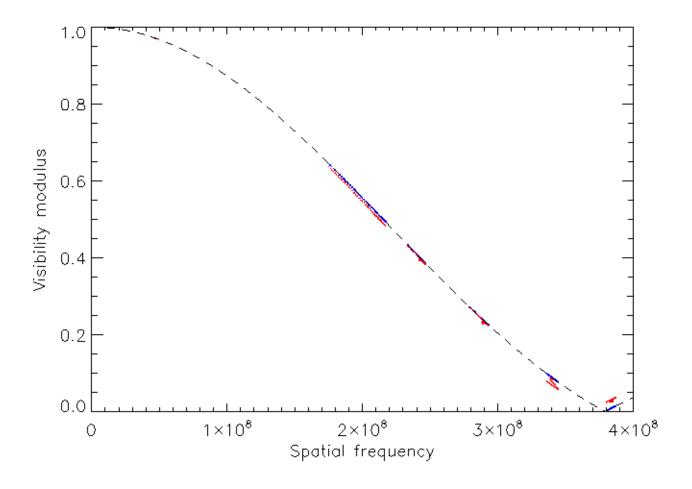
- . Exoplanètes en transit
 - 1. Contexte
 - 2. Echantillon d'étoiles
 - 3. Variations des paramètres pour les bases limites
- II. Activité stellaire
 - 1. Origine et caractérisitques
 - 2. Différences principales avec les modèles d'exoplanètes
 - 3. Exemples



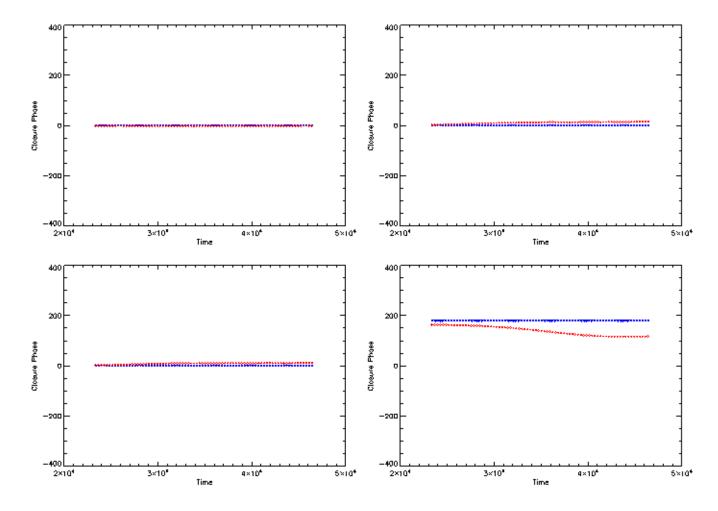
- Aujourd'hui, plus de 800 exoplanètes détectées.
- Plusieurs méthodes :
 - Vitesses radiales (RV) : la plus fructueuse
 - Méthode des transits
 - Astrométrie
 - Microlentille gravitationnelle
- Cependant, beaucoup de difficultés à les caractériser : R_{pl}, vsini , M_{pl}...difficiles à obtenir de façon précise. Ceci est du en partie à cause du manque d'information sur les étoiles.
- En combinant l'interférométrie et le méthode des RV, on peut déterminer précisément M_{pl}sini.
- Peut-on déterminer directement R_{pl} avec l'interférométrie ?

- Quels critères utiliser ?
 - $_{\circ}$ Besoin du diamètre angulaire de l'étoile $heta_{*}$
 - $_{\circ}$ Besoin du diamètre angulaire de l'exoplanète θ_{pl}
- Sur 862 planètes, seules 173 ont un rayon et une distance connus.
- Seules 169 ont un rayon, une distance connus et le rayon de l'exoplanète connu aussi.

Rapport entre le diamètre de la Planète et celui de l'étoile en %



- On veut étudier la variations des différents paramètres pouvant influencer le signal des exoplanètes en interférométrie.
- On fixe $\theta_*=1$ mas, $I_{pl}=0$. Variation :
 - De la position de l'exoplanète : entre 0 et 0.5 mas
 - Du diamètre de l'exoplanète : entre 0.04 et 0.24 mas
 - Des coefficients de Claret pour LD : entre 0.44 et 0.75.
- Pour chaque cas, on mesure la différence entre :
 - Le module de visibilité d'une étoile sans exoplanète (bleu) et d'une étoile avec exoplanète en transit (rouge)
 - > 1% et 5% de différence
 - La phase d'une étoile sans exoplanète et d'une étoile avec exoplanète en transit
 - > 2° et 20° de différence



• Exemple : visibilité de 55 Cnc

• Exemple : clôtures de phase de 55 Cnc

Le modèle:

- Modèle analytique
- Etoile : disque assombri
- Planète : disque uniforme
- Formule :

$$DS_*(\vec{u}) = \alpha \frac{J_1(\pi \theta u)}{u} + \pi \theta \beta \sqrt{\frac{\pi}{2}} \frac{J_{3/2}(\pi \theta u)}{(\pi \theta u)^{3/2}}$$
$$DS_t(\vec{u}) = \frac{J_1(\pi \theta_t u)}{u} \times N$$
$$DS_5(\vec{u}) = DS_*(u) - \left(1 - \frac{I_t}{I_*}\right) DS_t(u)$$

avec
$$N = (\cos(2\pi u_x x_t)\cos(2\pi u_y y_t) - \sin(2\pi u_x x_t)\sin(2\pi u_y y_t)) + i(\cos(2\pi u_x x_t)\sin(2\pi u_y y_t) + \sin(2\pi u_x x_t)\cos(2\pi u_y y_t))$$

Le modèle:

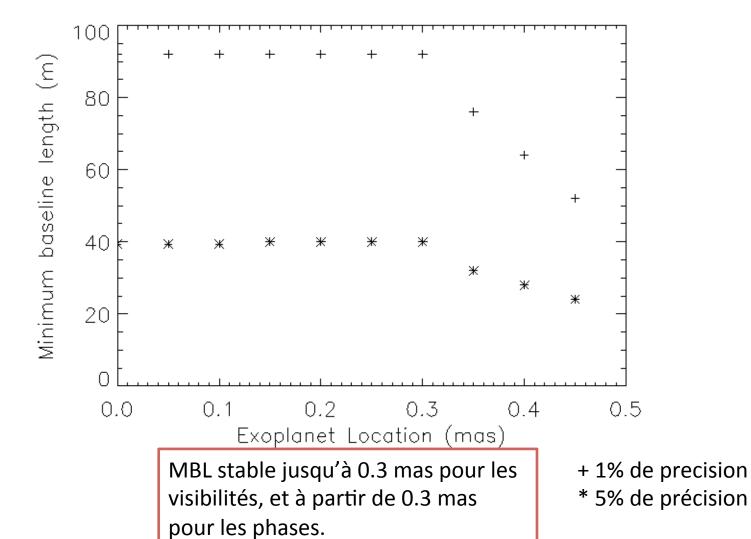
- Modèle analytique
- Etoile: disque assombri
- Planète : disque uniforme
- Formule :

$$DS_*(\vec{u}) = \alpha \frac{J_1(\pi \theta u)}{u} + \pi \theta \beta \sqrt{\frac{\pi}{2} \frac{J_{3/2}(\pi \theta u)}{(\pi \theta u)^{3/2}}}$$

$$DS_t(\vec{u}) = \frac{J_1(\pi \theta_t u)}{u} \times N$$

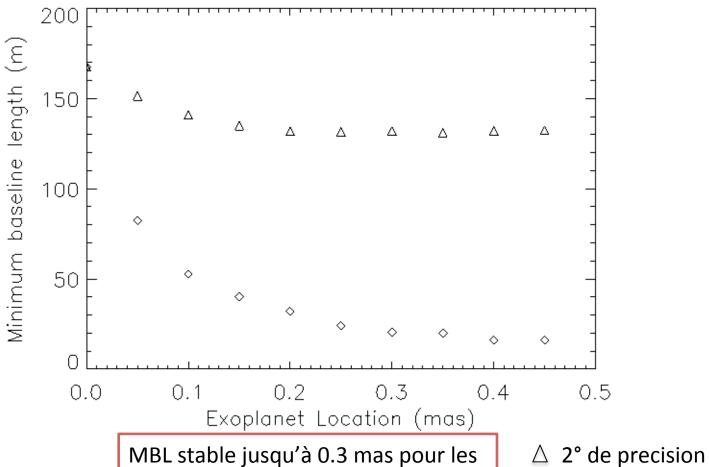
$$DS_5(\vec{u}) = DS_*(u) - \left(1 - \frac{I_t}{I_*}\right) DS_t(u)$$

$$VS_5(\vec{u}) = \left[DS_*(u) - \left(1 - \frac{I_t}{I_*}\right) DS_t(u)\right] / \left[\pi \theta \left(\frac{\alpha}{2} + \frac{\beta}{3}\right) - \left(1 - \frac{I_t}{I_*}\right) \frac{\pi \theta_t}{2}\right]$$

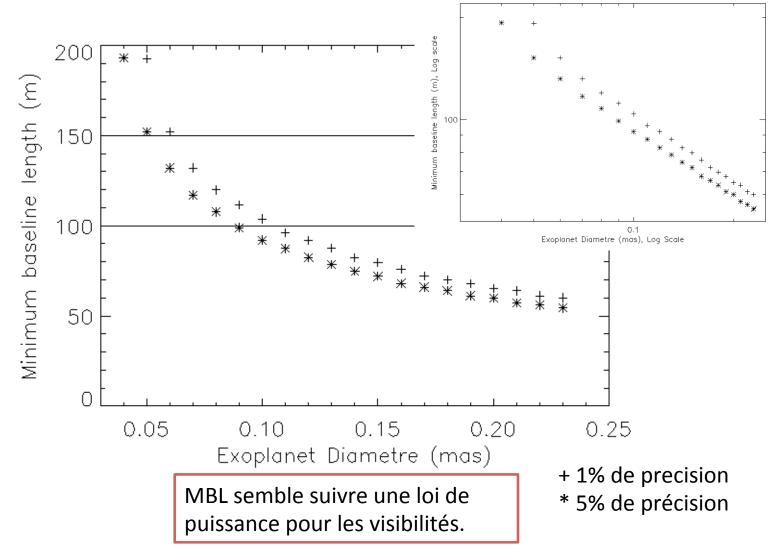

Étude de la longueur de base minimale pour avoir un écart de visibilité donné (1% ou 5%) sur un échantillon statistique :

• Étoiles avec exoplanètes en transit observables par VEGA, soit $0.3 < \theta_* < 3$ mas, magV < 10, avec les bases de VEGA.

Planète	1%		5%	
	MBL(m)	Config	MBL(m)	Config
55 CNC e	139	$S1E2 \times 0.50$	/	/
HD 97658 b	212	$S1E2 \times 076$	/	/
HD 209458 b	165	$S1E1 \times 0.50$	351	$S1E1 \times 1.06$
HD 189733 b	126	$W1E2 \times 0.50$	206	W1E2 $\times 0.82$
HD 149026 b	317	$S2E2\times1.28$	863	$S2E2 \times 3.48$
HD 17156 b	248	$E1W1 \times 0.79$	615	$E1W2 \times 1.96$
KEPLER-21 b	1421	$S2E1 \times 4.70$	/	/
WASP-33 b	332	$S1E2 \times 1.19$	792	$S1E2 \times 2.84$
KELT-2A b	335	$S1E2 \times 1.20$	842	$S1E2 \times 3.02$
HAT-P-2 b	418	$S1E2 \times 1.50$	1068	$S1E2 \times 3.83$
HD 80606 b	253	$W1S2 \times 0.91$	615	W1S2 $\times 2.21$
WASP-38 b	372	$E1S2 \times 1.23$	907	$E1S2 \times 3.00$
HAT-P-11 b	284	$S1E2 \times 1.02$	733	$S1E2 \times 2.63$
WASP-14 b	543	$W1E2 \times 2.16$	1342	W1E2 $\times 5.34$
KELT-3 b	538	W1E2.14	1307	W1E2 $\times 5.20$
XO-3 b	803	$E1W1 \times 2.56$	1928	$E1W2 \times 6.15$
HAT-P-22 b	304	$E1W1 \times 0.97$	718	$E1W1 \times 2.29$
HAT-P-14 b	666	$W1E2 \times 2.65$	1633	W1E2 $\times 6.50$

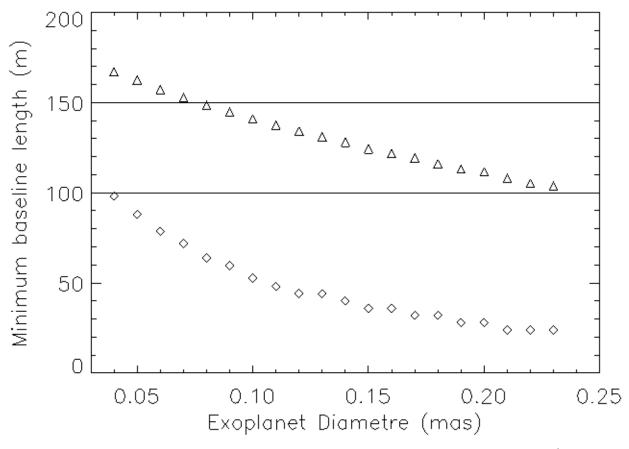


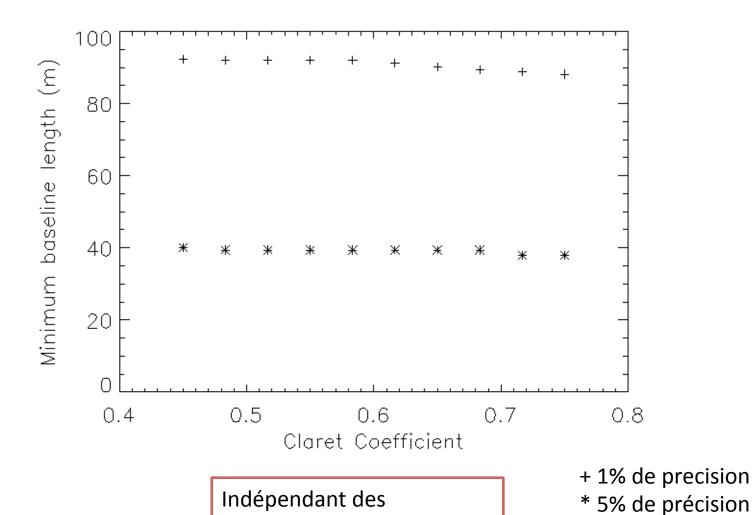
Variation de la position de l'exoplanète


visibilités, et à partir de 0.3 mas

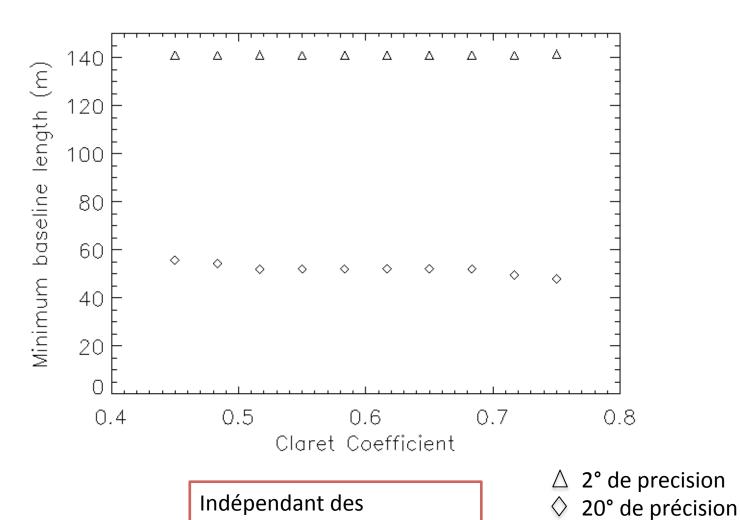
pour les phases.

20° de précision


Variation du diamètre de l'exoplanète


Variation du diamètre de l'exoplanète

- △ 2° de precision
- ♦ 20° de précision


Variation des coefficients de Claret

coefficients de Claret

Variation des coefficients de Claret

coefficients de Claret

Conclusion:

- La précision nécessaire dépend surtout de la position de l'exoplanète sur le disque stellaire et de son diamètre.
- Les bases nécessaires existent dans certains cas : bonne nouvelle ! (θ_{pl} suffisamment grands et 1% de différence dans les visibilités...)
- Détermination d'une loi de puissance pour connaître la longueur de base nécessaire en fonction de θ_*/θ_{pl} et du seuil de précision.

- Origine des taches magnétiques :
 - Champ magnétique dipolaire dans les étoiles
 - Rotation différentielle
 - Convection
- Caractéristiques :
 - Se trouvent souvent par paires
 - Entre 200K et 2000K plus froides que l'étoile (suivant le type d'étoile)
 - Taille: entre 0.1 et 11% de la surface du disque solaire, et jusqu'à 30%. Record de 60%.
 - Emission du triplet du Call (Gaia)
- Se trouvent sur des étoiles actives généralement. (Berdyugina 2005, 2009).

Différences avec les transits :

- Représentées par des disques assombris
 - > Besoin de coefficients de Claret aussi pour les tache
- Paramètres (taille,..) et surtout l'intensité : elle varie suivant la température de la tache :

$$T_{\rm eff,t} = \left(\frac{I_t}{\sigma}\right)^{1/4} = \left(\frac{nI_*}{\sigma}\right)^{1/4} = n^{1/4}T_{\rm eff,*}$$
 $n = x\%$ tel que $I_t = nI_*$

Le fait d'avoir une diamètre assombri ne change pas significativement les résultats, c'est surtout l'intensité de la tache I_t qui est importante. On considère donc que les MBL varient de la même manière que pour les exoplanètes.

Différences avec les transits :

Nouvelle formule :

$$DS_{*}(\vec{u}) = \alpha \frac{J_{1}(\pi \theta u)}{u} + \pi \theta \beta \sqrt{\frac{\pi}{2}} \frac{J_{3/2}(\pi \theta u)}{(\pi \theta u)^{3/2}}$$

$$DS_{t}(\vec{u}) = \left[\alpha_{t} \frac{J_{1}(\pi \theta_{t} u)}{u} + \pi \theta_{t} \beta_{t} \sqrt{\frac{\pi}{2}} \frac{J_{3/2}(\pi \theta_{t} u)}{(\pi \theta_{t} u)^{3/2}} \right] \times N$$

$$DS_{4}(\vec{u}) = DS_{*}(u) - \left(1 - \frac{I_{t}}{I_{*}} \right) DS_{t}(u)$$

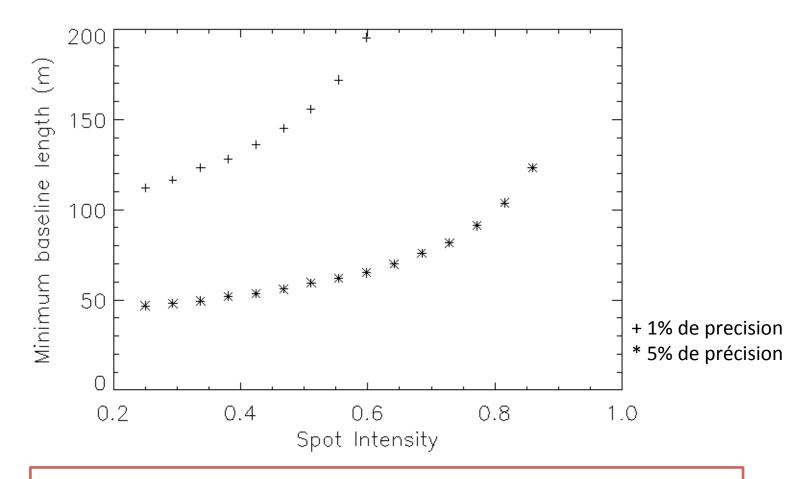
$$N = (\cos(2\pi u_x x_t) \cos(2\pi u_y y_t) - \sin(2\pi u_x x_t) \sin(2\pi u_y y_t)) + i(\cos(2\pi u_x x_t) \sin(2\pi u_y y_t) + \sin(2\pi u_x x_t) \cos(2\pi u_y y_t))$$

Différences avec les transits :

Nouvelle formule :

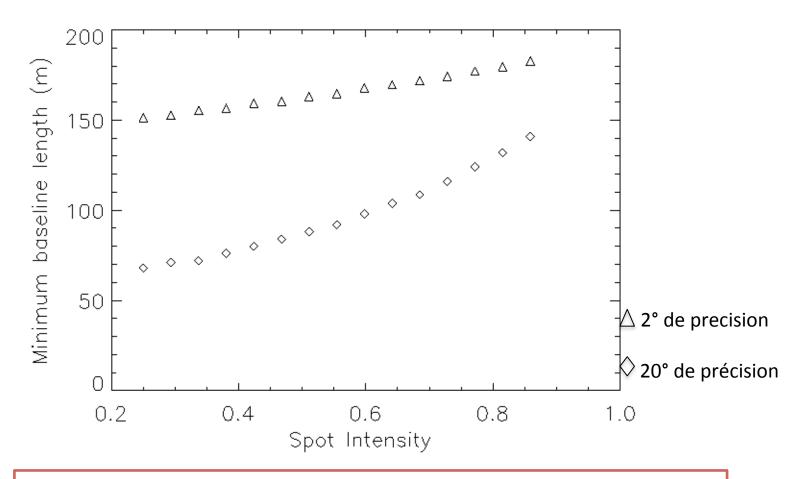
$$DS_*(\vec{u}) = \alpha \frac{J_1(\pi \theta u)}{u} + \pi \theta \beta \sqrt{\frac{\pi}{2}} \frac{J_{3/2}(\pi \theta u)}{(\pi \theta u)^{3/2}}$$

$$DS_t(\vec{u}) = \left[\alpha_t \frac{J_1(\pi \theta_t u)}{u} + \pi \theta_t \beta_t \sqrt{\frac{\pi}{2}} \frac{J_{3/2}(\pi \theta_t u)}{(\pi \theta_t u)^{3/2}}\right] \times N$$


$$DS_4(\vec{u}) = DS_*(u) - \left(1 - \frac{I_t}{I_*}\right) DS_t(u)$$

$$VS_4(\vec{u}) = \left[DS_*(u) - \left(1 - \frac{I_t}{I_*}\right) DS_t(u)\right] / \left[\pi \theta \left(\frac{\alpha}{2} + \frac{\beta}{3}\right) - \left(1 - \frac{I_t}{I_*}\right) \pi \theta_t \left(\frac{\alpha_t}{2} + \frac{\beta_t}{3}\right)\right]$$

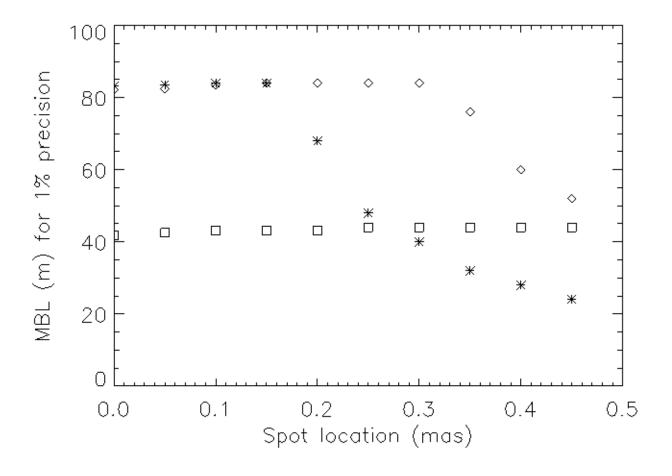
Variation de l'intensité de la tache



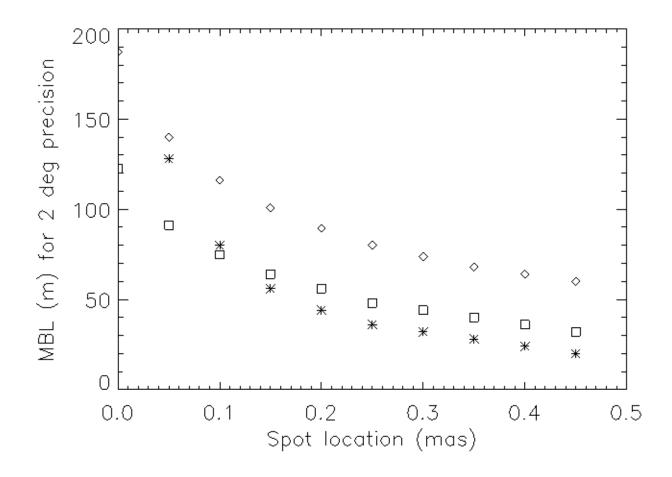
Plus I_t est grande, plus la base nécessaire est grande. Ceci s'explique par le contraste qui devient plus petit.

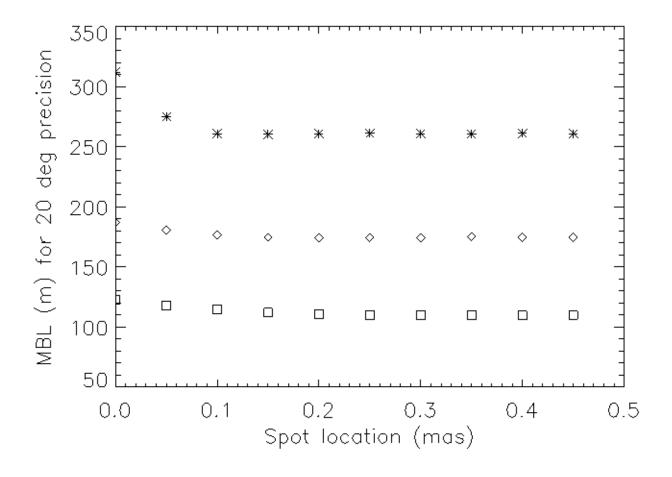
Variation de l'intensité de la tache

Plus I_t est grande, plus la base nécessaire est grande. Ceci s'explique par le contraste qui devient plus petit.


Exemples

- Trois cas différents que l'on pourrait rencontrer.
 - $_{\circ}$ Type solaire: G2V, T_{eff}=5780 K, T_{eff,t} = 5230 K, I_t = 0.67 $^{(\diamondsuit)}$
 - $_{\odot}$ TX Pic : K2III, T_{eff}=5000 K, T_{eff,t} = 3500 , I_t = 0.24 $^{(\Box)}$
 - $_{\odot}$ Exemple intermédiaire, $T_{\rm eff}$ =7364 K, $T_{\rm eff,t}$ = 6192, $I_{\rm t}$ = 0.5 (*)


Variation de la position de la tache


Variation de la position de la tache

Variation de la position de la tache

Conclusion:

- Variations d'autres paramètres : longueur d'onde, précision...
- Quels interféromètres peuvent être utilisés ? VEGA ?
 MIRC ? ...
- Plusieurs taches?
- Injection des fichiers oifits créés par ASPRO 2 dans LITpro pour obtenir les observables.
- Besoin d'observer des magnitudes élevées (V>10) pour les transits.
- Ajout de la convection ? (modèle numérique)

Merci!

